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Introduction. All strings make the same music, and support the same physics,
because all strings have the same shape. The vibrational physics of a drumhead
is, on the other hand, shape-dependent—whence Mark Kac’ famous question:
“Can one hear the shape of a drum?”1 Relatedly, all instances of the quantum
mechanical “particle-in-a-box” problem are, in the one-dimensional case, scale-
equivalent to one another, but higher-dimensional instances of the same problem
are (in general) inequivalent.

Though the one-dimensional box-problem yields quite readily to exact
closed-form analysis—the simplest (but only the simplest!) aspects of which
can be found in every quantum text—the higher-dimensional problem (N ≥ 2)
is in most of its aspects analytically intractable except in certain special cases.
In previous work2 I have identified a class of cases that yield to analysis by what
might be called the “quantum mechanical method of images.” I undertake the
present review of the essentials of that work partly to make it more readily
available to students of quantum mechanics, but mainly to be responsive to
an expressed need of my colleague Oz Bonfim, who speculates that some of my
results may be relevent to his own work in connection with the so-called “Bohm
interpretation of quantum mechanics.”3 I have also an ulterior motivation,

1 Amer. Math. Monthly 73, 1 (1966). This classic paper is reprinted in
Mark Kac: Selected Papers on Probability, Number Theory & Statistical Physics
()

2 feynman formalism for polygonal domains (–); circular
boxes & rigid wavepackets (–).

3 See P. R. Holland, The Quantum Theory of Motion: An Account of the
de Broglie-Bohm Causal Interpretation of Quantum Mechanics ().
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which will from time to time serve invisibly to shape my remarks: I plan soon
to examine aspects of the problem of doing quantum mechanics in curved space,
and imagine some of this material to stand preliminary to some of that.

1. Review of the one-dimensional box problem. A mass point m is confined by
infinite forces to the interior 0 ≤ x ≤ a of an interval, within which it moves
freely. The “infinite square well potential potential” standardly associated with
this problem

U(x) =

{∞ x < 0
0 0 ≤ x ≤ a
∞ a < x

is such a singular object as to be (though it can be considered to be the
endpoint of a limiting process) in reality scarcely more than a figure of speech,
a mnemonic for remembering conditions which we are prepared to impose “by
hand” upon the wave function. The time-independent Schrödinger reads

ψ′′(x) = −k2ψ(x) with k ≡
√

2mE

�2

and the physically acceptable solutions are required
• to be continuous
• to vanish outside the interval [0, a]
• to be normalized.

An elementary argument leads fairly immediately to the familiar eigenfunctions

ψn(x) =

√
2
a

sin knx with kn ≡ nπ

a
: n = 1, 2, 3, . . . (1)

and to the associated energy eigenvalues

En =
�2

2m
k2
n = En2 with E ≡ h2

8ma2
(2)

Here as generally, the connection between quantum statics and quantum
dynamics is established by the (Green’s function or) “propagator,” which is
assembled from static data

K(x, t; y, 0) =
∞∑

n=1

e−
i
�
Entψn(x)ψ∗

n(y) (3)

but permits one (in the absence of intervening measurement processes) to write

ψ(x, 0) −→ ψ(x, t) =
∫

K(x, t; y, 0)ψ(y, 0) dy (4)

in description of the temporal evolution of the initial state ψ(x, 0). If, in
particular, ψ(x, 0) = ψn(x) then it follows from (4) by the orthonormality
of the eigenfunctions (

∫
ψ∗
m(y)ψn(y) dy = δmn) that

ψ(x, t) = e−
i
�
Entψ(x, 0) and |ψ(x, t)|2 is t-independent
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but in less specialized cases ψ(x, t) does not simply “buzz harmonically” (like
a string in one of its harmonic modes) and the probability density |ψ(x, t)|2 is
launched into actual motion. Asymptotically we expect to lose all knowledge
of the initial state of the system, and to obtain

|ψ(x)|2 −−−−−−−−→
t→∞

1/a

Returning now from generalities to the specifics of the particle-in-a-box
problem at hand, one has only to introduce (1) and (2) into (3) to obtain

K(x, t; y, 0) =
2
a

∞∑
n=1

sinnπ
x

a
· sinnπy

a
· exp

{
− i

�
En2t

}
(5.1)

=
1
a

∞∑
n=1

2 sinnξ · sinnζ︸ ︷︷ ︸ · exp
{
− iβn2

}
= cosn(ξ − ζ) − cosn(ξ + ζ)

=
1
a

∞∑
n=1

e−iβn2
cosn(ξ − ζ) − 1

a

∞∑
n=1

e−iβn2
cosn(ξ + ζ) (5.2)

where the dimensionless variables ξ, ζ and β are defined

ξ ≡ πx/a ζ ≡ πy/a β ≡ Et/� (6)

Further progress is greatly facilitated by the observation that we have at this
point established contact with the inexhaustibly rich theory of theta functions.4

These functions come to us in four flavors, but it is only in ϑ3(z, q) that—as
it turns out—we have specific interest, so I will drop the identifying subscript.
By definition5

ϑ(z, τ) = 1 + 2
∞∑

n=1

qn
2
cos 2nz with q = eiπτ (7)

4 This theory is the creation of C. G. Jacobi (–), and was presented
to the world in his youthful Fundamenta nova theoriae functionum ellipticum
(). The theory was originally devised as an aid to the development of what
are now called “Jacobian elliptic functions” (see, for example, Chapter 16 of
Abramowitz & Stegun), but is now recognized to have intimate connections
with virtually the whole of higher analysis; Richard Bellman, in his wonderful
little book A Brief Introduction to Theta Functions, has provided a valuable
survey of the field, in all its incredible variety.

5 See Abramowitz & Stegun 16.27 or Bellman’s §2. Confusingly, some
sources (see, for example, Encyclopedic Dictionary of Mathematics ()
p. 529, or Magnus & Oberhettinger, p. 98) adopt—as did I in the old material
upon which I base the present discussion—the variant definition

ϑ(z, τ) = 1 + 2
∞∑

n=1

qn
2
cos 2nπz
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in which notation (5.2) reads

K(x, t; y, 0) = 1
2a

[
ϑ
(
ξ−ζ
2 ,−β

π

)
− 1

]
− 1

2a

[
ϑ
(
ξ+ζ
2 ,−β

π

)
− 1

]
= 1

2a

[
ϑ
(
ξ−ζ
2 ,−β

π

)
− ϑ

(
ξ+ζ
2 ,−β

π

)]
(8)

Bellman remarks in his §4 that “the theta functions satisfy a host of recondite
transformation formulas”6 of which “one of the most fascinating” reads

ϑ(z, τ) = A · ϑ
( z
τ
,−1

τ

)
where A ≡

√
i/τ ez

2/iπτ (9)

Concerning this simple-looking formula—which some authors call “Jacobi’s
imaginary transformation”—Bellman writes that it

has amazing ramifications in the fields of algebra, number theory,
geometry, and other parts of mathematics. In fact, it is not easy to
find another identity of comparable significance. We shall make
some effort in coming pages to justify this apparently extravant
statement.

My own effort in coming pages may serve to demonstrate that (9) has important
applications also to quantum mechanics, where it encapsulates the relationship
between the standard (Hamiltonian) formalism and Feynman’s (Lagrangian
based) sum-over-paths formalism.

It follows by 2 cos 2nz = ei2nz + e−i2nz from (7) that

ϑ(z, τ) =
∞∑
−∞

ei(πτn
2−2nz)

=
√
i/τ ez

2/iπτ ·
∞∑
−∞

exp
{
− i

(πn2

τ
+

2nz
τ

)}
by (9)

=
√

i
τ

∞∑
−∞

exp
{
− iπ

τ

( z
π

+ n
)2}

(10)

Returning with this result to (8) we have

K(x, t; y, 0) =
√

−iπ
4a2β

∞∑
−∞

[
exp

{ iπ2

β

(ξ − ζ

2π
+ n

)2}
− exp

{ iπ2

β

(ξ + ζ

2π
+ n

)2}]
=

√
m
iht

∞∑
−∞

[
exp

{ i

�

m(x− y + 2an)2

2t

}
− exp

{ i

�

m(x+ y + 2an)2

2t

}]
(11)

=
√

m
iht exp

{ i

�

m

2
(x− y)2

t

}
+ infinite sum of similar terms (12)

It is to facilitate interpetation of the isolated term—and by extension of the
others—that I digress now to review some aspects of the classical/quantum
dynamics of an unconstrained free particle.

6 For a representative sample see p. 99 of Magnus & Oberhettinger.
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Hamilton’s Principle assigns dynamical significance to the spacetime path
(or paths)

x(t) : (x, t) ←−−−−−−−−−−−−
path

(y, 0)

which extremize the action functional

S[path] ≡
∫ t

0

L
(
ẋ(t′), x(t′)

)
dt′

S[dynamical path] is a (possibly multiple-valued) function of the endpoints

S(x, t; y, 0) ≡ S[(x, t) ←−−−−−−−−−−−−
dynamical path

(y, 0)]

called the “2-point action function” (or sometimes by me, in my admittedly
idiosyncratic terminology, the “dynamical action”). S(x, t; •, •) is a solution of
the Hamilton-Jacobi equation

H(Sx, x) + St = 0

where Sx ≡ ∂S/∂x, St ≡ ∂S/∂t. For a free particle one has L(ẋ, x) = 1
2mẋ2 so

Hamilton’s principle supplies mẍ = 0 of which the (solitary) solution is

x(t′) = y + vt′ with v ≡ x− y

t
: (x, t) ←−−−−−−−−−−−−−−−−

unconstrained free motion
(y, 0)

The “dyanamical action” function for such a system is given therefore by

Sfree(x, t; y, 0) =
∫ t

0

1
2mv2 dt′ =

m

2
(x− y)2

t
(13.1)

and is a solution of
1

2m

(∂S
∂x

)2

+
∂S

∂t
= 0

The so-called “Van Vleck determinant”

D(xxx, t;yyy, 0; ) ≡ det
∣∣∣∣
∣∣∣∣ ∂2S

∂xi∂yj

∣∣∣∣
∣∣∣∣

—which figures importantly in the higher-dimensional generalization7 of the
material here under review—reduces in the present instance to the simple
expression

Dfree = −m

t
(13.2)

Equations (13) put us in position to recognize that the term which stands
isolated on the right side of (12) can be written

√
m
iht exp

{ i

�

m

2
(x− y)2

t

}
=

√
i
hDfree · exp

{ i

�
Sfree(x, t; y, 0)

}
= Kfree(x, t; y, 0)

=
∫ +∞

−∞
e−

i
�
E(p)tψp(x)ψ∗

p(y) dp (14)

7 See Chapter I, p.88 of quantum mechanics ().
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where E(p) ≡ 1
2mp2 and ψp(x) ≡ 1√

h
exp

{
i
�
px

}
refer familiarly to the standard

quantum mechanics of a free particle.

Look now to the classical mechanics of a confined free particle. For such
a system there exist multiple dynamical paths (x, t) ←−−−−− (y, 0), which is to
say: the action functional S[path] possesses multiple extrema; in addition to
the “direct” path there are “n-bounce paths” of two types—those that bounce
first off the barrier at x = 0 and those that bounce first off the barrier at x = a.
Details relating to the design of that infinitude of dynamical paths is greatly
facilitated by the “barber shop construction” known as the “method of images”
(see Figures 1 & 2). It emerges that paths are classified most usefully not by
their handedness (i.e., by whether the first bounce is left or right) but by their
parity (i.e., by whether the number of bounces experienced by the particle is
even or odd), for this reason:

paths of even parity have lengths = |x− y + 2na| : n = 0,±1,±2, . . .
paths of odd parity have lengths = |(x− y + 2na) + 2(a− x)|

= |x+ y + 2na| : n = 0,±1,±2, . . .

It makes sense on these grounds to speak of “the even/odd path of order n,”
and it makes tentative good sense, on the basis of (13.1), to write

S[even path of order n] =
m

2
(x− y + 2na)2

t

S[ odd path of order n] =
m

2
(x+ y + 2na)2

t

in which notation (11) assumes the following very striking form:

K(x, t; y, 0) =
√

m
iht

∞∑
n=−∞

{
e

i
�
S[even path of order n] − e

i
�
S[odd path of order n]

}
=

∑
all paths

(−)number of reflections
√

m
ihte

i
�
S[classical path] (15)

The result just achieved raises this obvious question: Why the minus sign?
It is in the first place a clear implication of (11) that the minus sign is essential
if we are to achieve

K(x, t; y, 0) = 0 when either x or y lies at either endpoint

Its presence admits, however, of interpretation on other grounds. Suppose the
classical action were to exhibit a jump discontinuity

S −→ S + ∆S

at each reflection point. We would then recover (15) if it were the case that
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xy

t

a

Figure 1: Spacetime diagram in which reflected free particle paths
are displayed as straight paths from the source point (y, 0) to various
“images” of the target point (x, t). Note how paths that involve an
even number of bounces are distinguished from those that involve
an odd number.

xy

t

a

Figure 2: Representation of the construction by which fictitious
image paths give rise in physical spacetime to multiply reflected
paths.
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i
�
∆S = i(1+2n)π, which entails (here n is any positive or negative integer, not

to be confused with the n we have used to identify paths)

∆S = (n+ 1
2 )h (16)

Such a result would be rendered intelligible if, proceeding in reference to the
following figure, we were to require that the shaded region have area given by

pp

aa xx

Figure 3: The figures are drawn on phase space. The figure on
the left represents the collision of a particle with an idealized barrier
of infinite stiffness. On the right the particle penetrates a certain
distance into a relatively more physical (because relatively “soft”)
barrier.

the Bohr-Sommerfeld quantization condition8

∮
p dx = (n+ 1

2 )h

Though this little argument is certainly not conclusive, it is, I think, powerfully
suggestive.

One is reminded in this general connection that light, when reflected from
a medium of higher index of refraction, experiences a 180◦ phase advance (but
no such phase advance when the index of refraction is lower). The analogy is,
however, not precise: When a classical particle enters a region of discontinuously
higher potential its momentum decreases (p =

√
2mE �→

√
2m(E − U)) but the

phase velocity u = E/p of the associated ψ-wave ψ(x, t) ∼ exp
{

i
�
[px − Et]

}
8 See Max Jammer, The Conceptual Development of Quantum Mechanics

(), §3.1; J. B. Keller, “Correct Bohr-Sommerfeld Quantum Conditions for
Nonseparable Systems,” Annals of Physics 4,180 (1958). Near the theoretical
foundations of this topic—and of phase-skip phenomena generally—lies that
branch of asymptotic analysis having to do with what is called “Stokes’
phenomenon;” for an excellent review of the subject and its applications see
J. Heading, An Introduction to Phase-Integral Methods ().
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increases, meaning that the “mechanical index of refraction” has become (not
higher but) lower. And in “classically forbidden regions” where U > E the
index of fraction becomes actually imaginary (refraction becomes absorption).It
is, therefore, for multiple reasons that the optical experience fails to illuminate
the quantum situation.

If we agree to include reflective jump-discontinuities in our definition of the
classical action

S[classical reflective path] = S[equivalent image path]
+ (number of reflections) · ∆S

(17)

with ∆S = (n+ 1
2 )h, then (15) admits of the following even simpler formulation:

K(x, t; y, 0) =
∑

all paths

√
m
ihte

i
�
S[classical reflective path] (18)

2. Miscellaneous comments and anticipatory remarks. If we were, on some
grounds, authorized to accept (18) as our starting point, then we could—
working backwards from the equation (11) that spells out the detailed meaning
of (18)—recover (5.1), from which we could simply read off the eigenfunctions
ψn(x) and eigenvalues En which were at (1) and (2) found to be
characteristic of the one-dimensional box problem. This, in a nutshell, is the
program that will lead us to the exact eigenfunctions/eigenvalues of a specialized
class of non-separable two-dimensional box problems.

Precisely such authorization was in fact provided by Feynman’s celebrated
observation9 that the propagator can be developed

K(x, t; y, 0) =
∑∫

e
i
�
S[path] D[path] (19)

provided the “sum-over-paths” is suitably defined. Here the summation process
is intended to embrace “all paths”—which we may, in a manner of speaking,
take to mean “all Hamiltonian comparison paths” (which Feynman thus gave
physical work to do)—but Feynman himself was well aware from the outset that
(19) entails10

K(x, t; y, 0) ∼ (normalization factor) · e i
�
S[classical path]

in the classical limit � ↓ 0, and that this “semi-classical approximation” becomes
exact when the particle moves freely (as it does also when the particle is

9 “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod.
Phys. 20, 367 (1948); R. P. Feynman & A. R. Hibbs, Quantum Mechanics and
Path Integrals ().

10 The argument—which Feynman himself only sketched—entails use of a
functional generalization of the so-called “method of stationary phase.”
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harmonically bound). We can therefore regard (18) to be a direct implication
of the Feynman formalism, in its simplest manifestation.

During the winter of / Born and Einstein engaged in vigorous debate
concerning the statistical interpretation of quantum mechanics. Record of that
debate—in which Born and Einstein took the one-dimensional particle-in-a-box
problem as their theoretical “laboratory”—was published in ,11 and came
at that time to my attention. I learned that Wolfgang Pauli had been apprised
of the substance of the debate, and in December of  had written to Born
as follows:

I had used the mathematics of the example of the mass point between
two walls, and of the wave-packets that belong to it, in my lectures
in such a way that the transformation formula of the theta-function
comes into play. But that is a mere detail.

Pauli’s remark stimulated Born to return to the problem, and it was from the
resulting publication12 that I gained my first exposure to the theory of theta
functions (concerning which Born himself drew inspiration from an old paper
of P. Ewald13 in which Jacobi’s transformation formula enters into discussion
of the electrostatic fields in crystals). When, in the winter/spring of /,
Richard Crandall and I developed the material outlined in §1 we imagined
ourselves to be breaking new ground in one—but only one—respect: Born had
all the essential physics in hand, but his eye on a different ball (see below), and
seems not to have appreciated that his work had anything to do with ideas that
had been put forward by Feynman (whom he does not cite). For Crandall and
me the connection with the Feynman formalism was, on the other hand, the
principal point of interest, and a point we found ourselves in position quickly
to make precise. But we were, as we ultimately discovered, not the first to do
so; in / Pauli lectured at the ETH in Zürich on “Feldquantisierung,”
and took advantage of the occasion to present one of the first critical accounts of
the then-new Feynman formalism. German-language notes from those lectures
circulated fairly widely (and should have been known to Born), but they became
available in English translation only in , when they were published by
MIT under the title Pauli Lectures on Physics, Volume 6: Selected Topics
in Field Quantization. In the final pages of that volume (at p. 170 in §30:
“The Path Integral Method”) one encounters discussion of “the example—
interesting in its own right—of a particle in a one-dimensional box” wherein
Pauli, writing in reference to what he calles the “method of images,” deftly

11 The Born-Einstein Letters: Correspondence between Albert Einstein and
Max & Hedwig Born from  to , with Commentaries by Max Born. The
letters in question (No105–111) appear on pp. 205–216. Three letters, bearing
on the substance of this debate, which Born received subsequently from Pauli
appear on pp. 217–225.

12 M. Born & W. Ludwig, “Zur Quantenmechanik des kräftefreien Teilchens,”
Z. für Physik 150, 106 (1958).

13 “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann.
Phys. 64, 253 (1921).
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encapsulates essentially all that Crandall and I had to say. And, as came later
to my attention, the mathematical method employed by Pauli was—as it refers
not to the Schrödinger equation but to the heat equation—old even when Pauli
wrote: Chapter III of A. Sommerfeld’s Partial Differential Equations in Physics
()—which should also have been familiar to Born—is devoted to “Boundary
Value Problems in Heat Conduction,” and its §16 (“Linear Heat Conductors
Bounded on Both Ends”) presents all the essentials of the argument devised by
Pauli and Crandall/Wheeler, though for obvious physical reasons it contains no
reference to any analog of “classical motion.”

I digress to describe the issue which was of such distractingly preeminent
interest to Born. A particle-in-a-box is initially localized, in the sense that
both ∆x and ∆v = 1

m∆p are small. How—asymptotically in time—does that
localization become lost, and the distribution |ψ(x, t)|2 become flat? The
following figure captures the classical essence of their idea. So far as concerns

t

a

Figure 4: Spacetime diagram of the classical representation of the
mechanism by which initial localization information becomes lost.

the quantum aspects of the problem, Born & Ludwig begin with the pretty
observation that if g(x) is defined on the unbounded line (where it describes,
let us suppose, a localized wavepacket), then

G(x) ≡
∞∑

n=−∞
g(x+ 2na) : convergence assumed

is periodic (G(x) = G(x+ 2a)) and

Ψ(x) ≡ G(x) −G(−x)
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is simultaneously periodic and odd, from which it follows that Ψ(0) = Ψ(a) = 0
automatically (i.e., for all such functions g(x)); the function Ψ(x) describes
what might be called a “boxed wavepacket.” Born & Ludgwig concentrate on
the illustrative case of a “launched Gaussian”

g(x) =
√

1
σ0

√
2π

exp
{
−

(x−x0
2σ0

)2 + i
�
mv(x− x0)

}
Such a wavepacket possesses initially minimal dispersion (∆x · ∆p = 1

2� with
∆x = σ0), but with the passage of time the dispersion grows

σ(t) =
√

1 + (�t/2mσ2
0)2

and in the characteristic time

τ ∼ a
1
m∆p

= 2maσ0/�

becomes as broad as the box. Thus prepared, Born & Ludwig introduce the
nomenclature (here pn ≡ �kn = hn/2a)

K(x, t; y, 0) =
{

righthand side of (5.2): the “wave representation”
righthand side of (11): the “particle representation”

=




1
2a

∑∞
−∞

[
exp

{
i
�

[
pn(x− y) − 1

2mp2
nt

]}
− exp

{
i
�

[
pn(x+ y) − 1

2mp2
nt

]}]
√

m
iht

∑∞
−∞

[
exp

{
i
�

m(x−y+2an)2

2t

}
− exp

{
i
�

m(x+y+2an)2

2t

}]
—the equivalence of which they establish by appeal to the “Poisson summation
formula”14 (i.e., by in effect reconstructing the proof of Jacobi’s transformation
formula (9))—and advocate the position that
• the particle representation pertains when t � τ
• the wave representation pertains when t � τ
• in general one should write something like

K(x, t; y, 0) = e−t/τKparticle(x, t; y, 0) + (1 − e−t/τ )Kwave(x, t; y, 0)

This idea—which Born & Ludwig admit to having appropriated from an idea
put forward by Ewald in quite another connection—does conform to an insight
fundamental to the Feynman formalism

Quantum mechanics becomes semi-classical
in the short-time approximation.

but might appear to represent something of a swindle, insofar as it advocates
a “distinction without a difference.” But consider the point to which Bellman
has drawn attention in his §10:

14 See R. Courant & D. Hilbert, Methods of Mathematical Physics (),
pp. 74–77. The heavy details of Born & Ludwig’s argument are developed in
§5 of feynman formalism for polygonal domains (–).
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It is an implication of Jacobi’s formula (10) that (set τ = it/π and z = 0)

f(t) ≡
∞∑
−∞

e−tn2
=

√
π
t

∞∑
−∞

eπ
2n2/t

While the left and right sides of the preceding equation are identically equal,
they are not computationally identical! Suppose, for example, we wanted to
evaluate f(.01). Working from the sum on the left, it follows from

e−25 ≈ 10−10.8

that we would (since n2/100 = 25 entails n = 50) have to keep about 50 terms
to achieve 10-place accuracy. Working, on the other hand, from the sum on the
right, we have

√
π
t

∞∑
−∞

eπ
2n2/t =

√
100π(1 + 2 e−100π2︸ ︷︷ ︸ + · · ·)

≈ 10−434

and have achieved accuracy to better than 400 places with only two terms! The
situation would be reversed if we were to evaluate f(100). This, I think, is the
insight that Born & Ludwig were laboring to promote.

The “method of images” has applications to electrostatics, the theory of
heat, optics, acoustics, classical/quantum mechanics. . .but prior to the physics
in any application stands the mathematical problem of describing—of describing
in terms most aptly suited to the intended application—the rule according to
which points in the physical domain become associated with points in signed
“images” of that domain:

physical point �−→ signed “images” of that point (20)

In the one-dimensional case that has been our exclusive concern thus far the
ramification process (20) is so exceptionally simple as to be describable in many
distinct ways: One might simply write

x on physical interval �−→ 2an± x, with parity of the sign (21)

or one might look to (for example) any of the diagramatic devices presented
in Figure 5. These and similar constructions acquire some of their interest
from the circumstance that when generalized to two or more dimensions (where
geometrical considerations come non-trivially into play) they tend to speak
to different issues, and to acquire distinct kinds and degrees of utility. The
following remarks are intended to illustrate distinctions of the sort that arise
and acquire importance in the 2-dimensional case:

It is evident (see Figure 6) even in the absence of formal proof that, in the
one-dimensional case, when an inteval somersaults from one position to another
it arrives always with the same orientation; to say the same thing another way:
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x

x a

Figure 5: Three representations of (20), as it pertains to image
construction in the one-dimensional case. The top diagram can
be read as a graph of (21); notice that while ←−� is a many-one
function, �−→ has the one-many character typical of what I call a
“ramification.” In the middle diagram the physical interval ramifies
by “somersaulting” up and down the real line, achieving what I call a
“reflective tesellation of the line.” In the bottom figure the physical
interval is conjoined with one of its reflective images to produce
a (boxed) “fundamental unit,” which is then translated in steps of
length 2a.

Figure 6: Alternative somersault excursions (grey and white) with
identical endpoints (black) achieve terminal orientations that are
invariable identical; unambiguous parity assignments are therefore
possible.

somersault excursions of every design—provided only that they begin and end
“at home”—preserve orientation. The same, less obviously, can be said of the
equilateral trangles that tesselate the plane, as is implicit in Figure 7. The
same, however, can not be said of the hexagonal tesellations of the plane; the
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Figure 7: Reflective tesselation of the plane by an equilateral
triangle. Triangles of six types are in evidence—three ∆-triangles,
corresponding to the even permutations of {1, 2, 3}, and three
∇-triangles, corresponding to the odd permutations. Reflective
radiation of the shaded triangle of the plane assigns unambiguous
parity and orientation to every triangle on the tesselated plane.
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Figure 8: The shaded hexagon moves reflectively by two distinct
routes to the dashed position, where it arrives with path-dependent
orientation. It is not possible, by reflective radiation of the shaded
hexigon, to assign unambiguous parity and orientation to other
hexagons on the tesselated plane.

source of the problem becomes immediately evident when one reflectively walks
a hexagon around a vertex: one finds that on the third move the hexagon returns
to its original position with permuted vertices and reversed parity, but that on
the sixth move (second time around) it is restored to its original configuration.
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In a sense that I will not attempt at this point to make precise, the hexagonal
tesselation lives on the double plane. Relatedly but more obviously: it is not
possible to color a hexagonal map using only two colors. We have touched here
on a geometrical distinction that has deep quantum mechanical ramifications,
as will emerge.

It is amusing to notice—though not immediately germaine to the quantum
mechanical work ahead of us—that when a tetrahedron (imagine its four sides to
be of different colors, and the mode of locomotion to be “rolling about an edge”)
is used to decorate the plane with triangles, one obtains (see Figure 9) a 4-color
tesselation with the remarkable property that the color and orientation of every
triangle is unambiguously determined (which is to say: a path-independent
implication of the starting position/orientation of the tetrahedron). Somewhat











1 1 1



1 1 1  

   

  

1 1  1



Figure 9: The 4-color tesselation generated by the tetrahedron that
sat originally on its white ∆-face. All ∆-triangles have the same
parity, and all ∇-triangles have the opposite parity. A tetrahedron
can sit on ∆ in 12 ways, and on ∇ in another 12; of those 24
orientations, only eight are realized in the figure.

surprisingly, the square tesselation generated by a rolling cube fails to display
similar self-consistency properties. When these pretty facts were brought to the
attention of readers of American Mathematical Monthly15 one problem-solver
observed that a rolling cube can assume only 12 of its 24 possible orientations,
but that a rolling icosahedron can assume any of its 60 possible orientations.

15 Advanced Problem 6388, proposed by N. Wheeler & Howard Straubing,
Amer. Math. Monthly 89, 338 (1982). The solution (90, 712 (1983)), by
J. W. Grossman and twelve others, proceeds directly from information evident
in Figure 9.
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3. Two approaches to the quantum physics of a particle in a rectangular box. Let
our mass point m be confined now to the interior of the rectangular region

R : {0 ≤ x1 ≤ a1; 0 ≤ x2 ≤ a2}

where x ≡ {x1, x2} refer to an inertial Cartesian coordinatization of the plane.
We have

∇2ψ(x) = −k2ψ(x) with k ≡
√

2mE

�2
: x ∈ R

and require ψ(∂R) = 0. Standardly16 one proceeds by separation of variables,
writing ψ(x1, x2) = f(x1) · g(x2). Easily—since the work was done already in
the one-dimensional case: see again (1) and (2)—one obtains the normalized
eigenfunctions

ψn1n2(x1, x2) =
√

4
a1a2

sin
(n1π

a1
x1

)
· sin

(n2π

a2
x2

)
(22)

and finds the associated energy eigenvalue to be given by

En1n2 = E1n
2
1 + E2n

2
2 with E1 ≡ h2

8ma2
1

and E2 ≡ h2

8ma2
2

(23)

Here {n1, n2} ∈ {1, 2, 3, . . .} and a1a2 is just the area of the box R. I propose,
however, to proceed non-standardly—by illustrative 2-dimensional application
of the method of images.

It is by implicit reference to the tesselated plane (see Figure 10) that one
designs the “bank shots” of classical billiards, and it is from (18) that we acquire
interest in the totality of such “classical reflective paths” (xxx, t) ←−−−−− (yyy, 0).
It is computationally useful—and in more complicated cases essential—to be
somewhat circumspect when setting up the “sum-over-paths” to which (18)
speaks; in Figure 11 the physical box has been joined with three of its reflective
images to form what I call the “fundamental unit.” All the “reflective” aspects
of the problem have been absorbed into the design of the fundamental unit, and
tesselation of the plane has been achieved (no further somersaulting required)
by translation of the fundamental unit. Introduction of the fundamental unit
permits one to write ∑

all image points

=
∑

translations

∑
image points within
fundamental unit

Elaborating upon notation introduced in Figure 12, let the coordinates of the

16 See, for example, §5.3 of D. Griffiths, Introduction to Quantum Mechanics
().
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Figure 10: In classical billiards one uses the tesselated plane to
construct (compare Figure 2) individual“bank shots.” In quantum
billiards one acquires interest in the totality of such reflective paths.



1 

Figure 11: The physical rectangle (white) is joined with three of
its reflective images to form the “fundamental unit” (outlined), and
tesellation of the plane is achieved by translation of the fundamental
unit. See again the bottom diagram in Figure 5.
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xx

x x

T

T

Figure 12: The “fundamental unit” and associated notations.

“target point” within the physical box be notated

xxx ≡ xxx0 =
(

x1

x2

)
Then

xxx1 =
(
−x1

+x2

)

xxx2 =
(
−x1

−x2

)

xxx3 =
(

+x1

−x2

)
describe the locations of the “fundamental image points” (image points within
the fundamental unit) and we can in the general case write

xxx = xxxα + n1TTT 1 + n2TTT 2 (24)

The numbers α ∈ {0, 1, 2, 3} and {n1, n2} ∈ {. . . ,−2,−1, 0,+1,+2, . . .} serve
jointly to identify each individual image point, while

TTT 1 ≡
(

2a1

0

)
and TTT 2 ≡

(
0

2a2

)
(25)

are “translation vectors” that serve to describe the periodicity of the tesselation.
Image points with α ∈ {0, 2} have even parity (which is to say: they give rise,
by the construction of Figure 10, to paths with an even number of reflection
points), while those with α ∈ {1, 3} have odd parity; in short, one can—by
notational contrivance—write

parity = (−)α
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The squared length of the line drawn from a point yyy in the physical box to
the image point (24) can be described

|xxximage point − yyy|2 = SSS·SSS + 2
(
n1SSS·TTT 1 + n2SSS·TTT 2

)
+ n1n1TTT 1·TTT 1 + 2n1n2TTT 1·TTT 2 + n2n2TTT 2·TTT 2

with SSS ≡ SSSα ≡ xxxα − yyy (26)

giving = SSS·SSS + 2nnn·Tvvv + nnn·Tnnn

where T ≡
(
TTT 1·TTT 1 TTT 1·TTT 2

TTT 2·TTT 1 TTT 2·TTT 2

)
and vvv = vvvα ≡ T –1

(
SSS·TTT 1

SSS·TTT 2

)
(27)

entail (I return to the semi-miraculous proof in a moment) SSS·SSS = nnn·Tvvv; we are
led thus, by quite a general line of argument, to this pretty result:

|xxximage point − yyy|2 = (vvv + nnn)·T(vvv + nnn) (28)

Concerning that “semi-miraculous proof”: we proceed from the observation
that the symmetric matrix T can be developed T = C TC where C is the square
matrix into which the TTT i enter as the column vectors:

C ≡ ||TTT 1 TTT 2||

The non-singularity of C is assured by the linear independence of TTT 1 and TTT 2.
Let TTT 1 and TTT 2 be the row vectors that enter into the description of C –1:

R ≡ C –1 ≡
∣∣∣∣
∣∣∣∣TTT 1

TTT 2

∣∣∣∣
∣∣∣∣

The statement RC = I amounts to an assertion that the bases {TTT 1, TTT 2} and
{TTT 1, TTT 2} are “bi-orthogonal:”17 TTT iTTT j = δij . From the familiar matrix-theoretic
fact that left inverses are also right inverses (together with the symmetry of the
identity I) we have RC = CR = C T RT = RT C T = I . Moreover T –1 = RRT. In
these notations we have vvv ≡ T –1CTSSS = RSSS, giving vvv·Tvvv = SSS·RTC TCRSSS = SSS·SSS,
as claimed.

The dynamical action associated with motion to an image point can now
be described rather elegantly as follows:

S(xxxα + n1TTT 1 + n2TTT 2, t;yyy, 0) =
m

2
(vvv + nnn)·T(vvv + nnn)

t
+ ∆S (29)

where the value of ∆S entails e
i
�
∆S = (−)α. The argument that brought us

to (29) is quite general in its main features; it is by specialization of T and vvvα
that one obtains results specific to (in particular) the rectangular box problem.

17 The former is known to crystalographers as the “reciprocal basis.”
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That I will do in good time. But to move efficiently beyond this point I now
digress to review an . . .

4. Outline of a theory of theta functions of several variables. The subject of
what Bellman calls “multidimensional theta functions” is taken up in his §61
and surveyed in the final eight pages of the monograph cited in Footnote 4, and
is sometimes encountered in physical applications (see the paper by Ewald cited
in Footnote 13). For notational and other reasons I find it convenient, however,
to proceed from scratch.18 Looking first to the one-dimensional pattern of our
argument. . .

Let g(x) be defined on the unbounded line, and so well-behaved that

G(x) ≡
∞∑
−∞

g(x+ n)

exists (i.e., that the series converges).19 Noting the periodicity of G(x)

G(x) = G(x+ 1)

we write =
∞∑

k=−∞
gk e

2πikx

gk =
∫ 1

0

G(y)e−2πiky dy

=
∞∑

n=−∞

∫ 1

0

g(y + n)e−2πiky dy

=
∫ +∞

−∞
g(y)e−2πiky dy

to obtain20

∞∑
n=−∞

g(x+ n) =
∞∑

n=−∞
e2πinx

∫ +∞

−∞
g(y)e−2πiny dy (30)

In the particular case g(x) = e−ax2
we have

∞∑
n=−∞

e−a(x+n)2 =
∞∑

n=−∞
e2πinx

∫ +∞

−∞
e−(ay2+2by) dy with b ≡ iπn (31)

18 The following material has been adapted from p. 129 et seq of “Two
particles in a 1-box; one particle in a 2-box” in feynmanism for polygonal
domains (–).

19 We note that a similar idea—applied there to a different objective—was
encountered already at the bottom of p. 11.

20 At x = 0 the following equation becomes precisely the “Poisson summation
formula;” see again Footnote 14.
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But the Gaussian integral has a familiar value∫ +∞

−∞
e−(ay2+2by) dy =

√
π

a
eb2/a : �(a) > 0

so we have—as a particular implication of (31)—

∞∑
−∞

e−a(x+n)2 =
√
π

a

∞∑
−∞

e2πinx−π2n2/a

Equivalently

∞∑
−∞

e−(π2/a)n2−2πixn =
√

a

π
e−ax2

∞∑
−∞

e−an2−2axn

which by notational adjustment

a =
iπ

τ
and x =

z

π

reads
∞∑
−∞

ei(πτn
2−2nz)

︸ ︷︷ ︸
=

√
i/τ ez

2/iπτ ·
∞∑
−∞

exp
{
− i

(πn2

τ
+

2nz
τ

)}

≡ ϑ(z, τ) according to (10)

We have, in short, been led to an expression which by one interpretation serves
to motivate the definition of the theta function ϑ(z, τ), and have at the same
time obtained a proof of the fundamental identity (9). And we have done so in
a way that admits straightforwardly of multivariable generalization:

Let g(x1, x2, . . . , xp) be some nice function of several variables, and form
the multiply-periodic function

G(x1, x2, . . . , xp) ≡
∑
nnn

g(x1 + n1, x2 + n2, . . . , xp + np)

The argument that gave (30) gives

∑
nnn

g(xxx+ nnn) =
∑
nnn

e2πinnn·xxx
∫ +∞

−∞
g(yyy)e−2πinnn·yyy dy1dy2 · · · dyp (32)

In the particular case g(xxx) = e−xxx·Axxx (the matrix can without loss of generality
be assumed to be symmetric, and by explicit assumption its eigenvalues all lie
on the right half-plane) we have

∑
nnn

e−(xxx+nnn)·A (xxx+nnn) =
∑
nnn

e2πinnn·xxx
∫ +∞

−∞
e−(yyy·Ayyy+2bbb·yyy) dy1dy2 · · · dyp
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with bbb ≡ iπnnn. Drawing now upon the famous “multidimensional Gaussian
integral formula”21

∫ +∞

−∞
e−(yyy·Ayyy+2bbb·yyy) dy1dy2 · · · dyp =

√
πp

det A
ebbb ·A

–1 bbb (33)

we obtain—as a particular implication of (32)—

∑
nnn

e−(xxx+nnn)·A (xxx+nnn) =

√
πp

det A

∑
nnn

e2πinnn·xxx−π2nnn·A–1nnn (34)

Equivalently22

∑
nnn

e−π2nnn·Bnnn−2πinnn·xxx =
1√

πp det B

∑
nnn

e−(xxx+nnn)·B –1(xxx+nnn)

=
1√

πp det B
e−xxx·B –1xxx

∑
nnn

e−nnn·B –1nnn−2xxx·B –1nnn

which by notational adjustment23

B =
1
iπ

W and xxx =
zzz

π

reads

∑
nnn

ei(πnnn ·Wnnn−2nnn ·zzz)

︸ ︷︷ ︸
=

√
ip

det W
e−i 1

πzzz·Mzzz
∑
nnn

e−i(πnnn·Mnnn+2nnn·Mzzz) (35)

≡ ϑ(zzz,W) by proposed definition

In this notation (35) becomes

ϑ(zzz,W) =

√
ip

det W
e−i 1

πzzz·Mzzz · ϑ(Mzzz,−M) (36)

which is the multivariable generalization of Jacobi’s identity (9).

This is not the place to undertake systematic development of the properties
of ϑ(zzz,W); to those I will return as occasions arise, in response to specific needs.

21 See §11.12 in H. Cramér, Mathematical Methods of Statistics ().
22 I find it convenient at this point to introduce the notation B ≡ A–1.
23 I encounter here a small problem: I need a matrix analog of τ , but T

has been preempted. I give the assignment to W because it lends itself to the
easily remembered clutter-reducing usage M ≡ W –1. In (35) below I will on one
occasion draw upon the symmetry of M to write nnn · Mzzz in place of zzz · Mnnn.
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It is sufficient to our immediate needs to observe that we are in position now
to write ∑

nnn

eβ(vvv+nnn)·T (vvv+nnn) = eβvvv·Tvvv ϑ
(
iβTvvv,− iβ

π T
)

(37.1)

=
√(

− π
β

)p 1
det T

ϑ
(
πvvv, π

iβT –1
)

(37.2)

And to notice the factorization (separation of variables) that comes into play
when W is diagonal: if

W =



ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωp




then
ϑ(zzz,W) = ϑ(z1, ω1) · ϑ(z2, ω2) · · · · · ϑ(zp, ωp) (38)

in which connection we are reminded that a similar factorization pertains to—
and in fact lies at the heart of the proof of—the Gauss integral formula (33).

5. Application to the rectangular box problem. Taking the Feynman formalism—
and more specifically (18)—as our point of departure, and drawing freely upon
information developed in §3, we have

K(xxx, t;yyy, 0)=
√(

i
h

)2det
∣∣∣∣ ∂2S0

∂xi∂yj

∣∣∣∣ · 3∑
α=0

(−)α
∑
nnn

exp
{

i
�
Sα

}
i
�
Sα = β(vvvα+ nnn)·T(vvvα+ nnn)

where β ≡ im/2�t and

T =
(

4a2
1 0

0 4a2
2

)

vvv0 =
(

(+x1 − y1)/2a1

(+x2 − y2)/2a2

)

vvv1 =
(

(−x1 − y1)/2a1

(+x2 − y2)/2a2

)

vvv2 =
(

(−x1 − y1)/2a1

(−x2 − y2)/2a2

)

vvv3 =
(

(+x1 − y1)/2a1

(−x2 − y2)/2a2

)

and where I have—somewhat mysteriously (but see below)—assigned to the
prefactor its direct path evaluation√(

i
h

)2det
∣∣∣∣ ∂2S0

∂xi∂yj

∣∣∣∣ = m
iht
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in every case: α = 0, 1, 2, 3. With these notations understood, the Feynman
formalism has supplied

K(xxx, t;yyy, 0) = m
iht

3∑
α=0

(−)αeβvvvα·Tvvvα ϑ
(
iβTvvvα,− iβ

π T
)

from which we desire to extract eigenvalue and eigenfunction information. To
that end, we pass (by means of Jacobi’s identity) to the “wave representation”
(37.2), writing

= m
iht

√(
− π

β

)2 1
det T︸ ︷︷ ︸

3∑
α=0

(−)α ϑ
(
πvvvα,

π
iβT –1

)
(39)

= 1
4a1a2

= 1
4·area = 1

area of fundamental unit

and observe that π
iβT –1 is diagonal

π
iβT –1 =

(
τ1 0
0 τ2

)
with τj = −ht/4ma2

j

so each of the theta functions factors: looking first to (38) and then to (7), we
have

ϑ
(
πvvvα,

π
iβT –1

)
= ϑ(πvα1, τ1) · ϑ(πvα2, τ2)

=
{

1 + 2
∞∑

n1=1

e−iφ1n
2
1 cos 2πn1vα1

}{
1 + 2

∞∑
n2=1

e−iφ2n
2
2 cos 2πn2vα2

}

where φj ≡ −πτj = πht/4ma2
j is a convenient abbreviation. Returning with

this information to (39), we have

K(xxx, t;yyy, 0)= 1
4a1a2

{ 3∑
α=0

(−)α + 2
∑
n1

e−iφ1n
2
1

3∑
α=0

(−)α cos 2πn1vα1

+ 2
∑
n2

e−iφ2n
2
2

3∑
α=0

(−)α cos 2πn2vα2

+ 4
∑
n1

∑
n2

e−i(φ1n
2
1+φ2n

2
2)

3∑
α=0

(−)α cos 2πn1vα1 cos 2πn2vα2

}

The first term on the right vanishes trivially. Looking to the second term:
cos 2πn1v01 and cos 2πn1v31 are actually identical (because v01 = v31), but enter
with opposite signs, and the same can be said of cos 2πn1v11 and cos 2πn1v21,
so the second term vanishes. The third term vanishes by a variant of the same
argument. Looking finally to the fourth (and only surviving) term, we once
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again appeal to details of the equations that define vvvα and obtain24

3∑
α=0

(−)α cos 2πn1vα1 cos 2πn2vα2

= cos 2πn1v01 cos 2πn2v02 − cos 2πn1v11 cos 2πn2v02

+ cos 2πn1v11 cos 2πn2v22

− cos 2πn1v01 cos 2πn2v22

≡ cos X01 cos X02 − cos X11 cos X02 + cos X11 cos X22 − cos X01 cos X22

=
[
cos X01 − cos X11

][
cos X02 − cos X22

]
(40)

=
[
−2 sin

(X01 + X11

2

)
· sin

(X01 − X11

2

)]
·[

−2 sin
(X02 + X22

2

)
· sin

(X02 − X22

2

)]
=

[
−2 sinπn1(−y1/a1)· sinπn1(+x1/a1)

]
·[

−2 sinπn2(−y2 /a2)· sinπn2(+x2/a2)
]

=4 sin
(n1π

a1
x1

)
sin

(n2π

a2
x2

)
sin

(n1π

a1
y1

)
sin

(n2π

a2
y2

)
(41)

Assembling the results now in hand, we have

K(xxx, t;yyy, 0)= 4
a1a2

∑
n1

∑
n2

e−
i
�
(E1n

2
1+E2n

2
2) t sin

(n1π

a1
x1

)
sin

(n2π

a2
x2

)
× sin

(n1π

a1
y1

)
sin

(n2π

a2
y2

)
where the notation 1

�
Ejt ≡ φj = 2πht/8ma2

j conforms to the Ej ≡ h2/8ma2
j of

p. 17. Comparison of the result just achieved with (3) gives back precisely the
{n1n2}-indexed eigenfunctions of (22) and eigenvalues of (23).

We have labored hard to recover a result we already possessed. What we
have gained is familiarity with a computational technique that retains its utility
even in certain cases to which the standard “separation of variables” method is
inapplicable. Additionally, we have demonstrated once again the relationship of
equivalence between standard formalism and the Feynman formalism, and have
seen that it is “Jacobi’s identity” that lies at the heart of the interconnection.

We could, in the present instance, have gotten along well enough without
any reference to the theory of “theta functions of several variables.” I proceeded
as I did partly to demonstrate the unifying utility of that theory, and partly
to cast new light on the “separation” phenomenon: it was the diagonality of
the matrix T that brought (38) into play, and that led ultimately to the key
factorization (40).

24 I write in boldface the subscripts I have adjusted; the simple point of
the adjustment is that latent simplifications remain invisible so long as a given
variable is allowed to wear several names.
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The “somewhat mysterious” value assigned to the normalization factor is
justified most convincingly by its ultimate success. Had we—as might at first
sight have seemed more natural—introduced a population of such factors√(

i
h

)2det
∣∣∣∣ ∂2Sα

∂xi∂yj

∣∣∣∣ : α = 0, 1, 2, 3

some damaging factors of i would have intruded; those would have put us in
violation of the boundary conditions, as they relate to the structure of the
propagator, and would also have prevented our achieving

lim
t↓0

K(xxx, t;yyy, 0) = δ(xxx− yyy)

I shall not linger to develop details supportive of the preceding remarks.

6. Particle in a right isosceles triangular box. Noting that there do in fact exist
(see the following figure) non-rectangular quadrilateral boxes that tesselate the

Figure 13: Two examples of non-rectangular quadrilaterals that
reflectively tesselate the plane. I know of no other examples. Both
designs possess third-order vertices; neither, therefore, can be drawn
as a two-color map.

plane, I turn my attention now to a small population of triangular box problems.
A little experimental doodling suggests, and Thomas Wieting has managed very
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elegantly to prove,25 that there exist precisely four triangles that reflectively
tesselate the plane. They are, in what will emerge to be their order of the
ascending computational complexity,

• the 45-45-90 triangle,
• the 60-60-60 triangle,
• the 30-60-90 triangle,
• the 30-30-120 triangle

and give rise to the tesselations shown in Figure 14. We concern ourselves here

Figure 14: The four possible triangular reflective tesselations of
the plane. Vertices of odd order are present only in the final case
30-30-120; unambiguous parity assignments are possible in each of
the other cases.

with the quantum physics of the simplest case.

The fundamental unit in the case 45-45-90 contains a total of eight cells,
as illustrated in Figure 15. Elaborating upon notation introduced in Figure 16,

25 Personal communication, ().
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Figure 15: The physical box (white) is joined with seven of its
reflective images to form the fundamental unit characteristic of the
right isosceles triangular box problem.

we have the following equations:

xxx0 =
(

x1

x2

)
= −xxx4 : both even

xxx1 =
(
−x1

+x2

)
= −xxx5 : both odd

xxx2 =
(
−x2

+x1

)
= −xxx6 : both even

xxx3 =
(
−x2

−x1

)
= −xxx7 : both odd

Our simplified Feynman formalism (summation only over the direct/reflected
classical paths) now supplies

K(xxx, t;yyy, 0) = m
iht

7∑
α=0

(−)α
∑
nnn

exp
{

i
�
Sα

}
i
�
Sα = β(vvvα+ nnn) ·T (vvvα+ nnn)
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Figure 16: The fundamental unit of the 45-45-90 tesselation, and
associated notations. Here again, I have been careful to rig the
notation so as to make it possible to write

parity of xxxα = (−)α

The short sides of the box have length a, so the tesselation has period
2a in both primary directions (which are in this case orthogonal).

where β retains its previous meaning and where

T = 4a2

(
1 0
0 1

)
is again diagonal, and vvvα = (xxxα− yyy)/2a

The argument which (by appeal to Jacobi’s identity) gave us (39) now gives

K(xxx, t;yyy, 0) = 1
4a2

7∑
α=0

(−)αϑ(πvvvα, πiβT –1)

π
iβT –1 = τ

(
1 0
0 1

)
with τ = − ht

4ma2

= 1
4a2

7∑
α=0

(−)αϑ(πvα1, τ) · ϑ(πvα2, τ)

= 1
4a2

7∑
α=0

(−)α
{
1 + 2

∞∑
n1=1

e−iφn2
1Cα1

}{
1 + 2

∞∑
n2=1

e−iφn2
2Cα2

}
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where φ = −πτ = πht/4ma2 and where I have found it convenient to adopt the
abbreviations

Cα1 ≡ cos Xα1 ≡ cos 2πn1vα1

Cα2 ≡ cos Xα2 ≡ cos 2πn2vα2

Trivially
7∑

α=0

(−)α = 0

while

7∑
α=0

(−)αCα1 = (C01 − C51) + (C21 − C31) + (C41 − C11) + (C61 − C71) = 0

7∑
α=0

(−)αCα2 = (C02 − C12) + (C22 − C72) + (C42 − C52) + (C62 − C32) = 0

because the bracketed terms cancel pairwise. So we have

K(xxx, t;yyy, 0) = 1
a2

∞∑
n1=1

∞∑
n2=1

e−
i
�
E(n2

1+n2
2)

7∑
α=0

(−)αCα1Cα2 (42)

To understand the surviving
∑

α we as a first step adopt the “principle of
disallowed aliases,” writing

7∑
α=0

(−)αCα1Cα2 = C01C02 − C11C12 + C21C22 − C31C32

+ C41C42 − C51C52 + C61C62 − C71C72

= C01C02 − C41C02 + C21C22 − C21C62

+ C41C42 − C01C42 + C61C62 − C61C22

=
[
C01C02 − C41C02 + C41C42 − C01C42

]
+

[
C21C22 − C21C62 + C61C62 − C61C22

]
=

[
C01 − C41

][
C02 − C42

]
+

[
C21 − C61

][
C22 − C62

]
=

[
cos X01 − cos X41

][
cos X02 − cos X42

]
+

[
cos X21 − cos X61

][
cos X22 − cos X62

]
= 4

{
sin

(X01 + X41

2

)
· sin

(X01 − X41

2

)
× sin

(X02 + X42

2

)
· sin

(X02 − X42

2

)
+ sin

(X21 + X61

2

)
· sin

(X21 − X61

2

)
× sin

(X22 + X62

2

)
· sin

(X22 − X62

2

)}
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Recalling now the definitions of Xα1 and Xα2, we have

7∑
α=0

(−)αCα1Cα2 = 4
{

sin
(n1π

a
x1

)
sin

(n2π

a
x2

)
sin

(n1π

a
y1

)
sin

(n2π

a
y2

)
− sin

(n1π

a
x2

)
sin

(n2π

a
x1

)
sin

(n1π

a
y1

)
sin

(n2π

a
y2

)}
Returning with this information to (42), and borrowing some notation from (22)
(i.e., from the rectangular box problem, made square by setting a1 = a2 = a)
we have

K(xxx, t;yyy, 0) =
∞∑

n1=1

∞∑
n2=1

e−
i
�
E(n2

1+n2
2)[ψn1n2(x1, x2)−ψn1n2(x2, x1)]ψn1n2(y1, y2)

The bracketed function—which can be described

[etc] =

∣∣∣∣∣∣
√

2
a sin(π

an1x1)
√

2
a sin(π

an1x2)√
2
a sin(π

an2x1)
√

2
a sin(π

an2x2)

∣∣∣∣∣∣ ≡ Ψn1n2(x1, x2)

—is antisymmetric in {n1, n2},26 so only

1
2 [ψn1n2(y1, y2) − ψn2n1(y1, y2)] = antisymmetric component of ψn1n2(y1, y2)

= 1
2Ψn1n2(y1, y2)

contributes effectively to the summation process. We can therefore write

K(xxx, t;yyy, 0) = 1
2

∞∑
n1=1

∞∑
n2=1

e−
i
�
E(n2

1+n2
2)Ψn1n2(x1, x2)Ψn1n2(y1, y2)

But every term in the sum is now counted twice; we are led therefore to impose
the constraint n2 > n1, writing

∞∑
n1=1

∞∑
n2=1

= 2
∑
nnn

: nnn takes values indicated in Figure 17

We come thus to the conclusion that the right isosceles box problem gives rise
to energy eigenvalues that can be described determinentally

Ψn1n2(x1, x2) = 2
a

∣∣∣∣∣∣
sin(π

an1x1) sin(π
an1x2)

sin(π
an2x1) sin(π

an2x2)

∣∣∣∣∣∣ (43)

and to the energy spectrum

En1n2 = E(n2
1 + n2

2) with E ≡ h2

8ma2
(44)

26 It is antisymmetric also in {x1, x2}, but physically 0 ≤ x1 ≤ x2 ≤ a; the
point with coordinates {x2, x1} lies in an image of the physical box.
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Figure 17: The quantum numbers of the square box problem (on
the left) compared with those of the 45-45-90 box (on the right).
The eigenstates are antisymmetrized square box states, so a kind
of “exclusion principle” is in effect. The eigenvalues are identical,
except that those associated with the triangular box have reduced
degeneracy (evident as “erased lattice points” in the figure), and
those with n1 = n2 are excluded altogether.

In (43) we have recovered precisely the eigenstates that Morse & Feshbach27

obtain by antisymmetrization of the square box states.

Morse & Feshbach (see their Figure 6.10) attempt to provide graphical
representation of some properties of the eigenfunctions Ψn1n2(x1, x2), but with
the assistance of a modern resource such as Mathematica one can do much
better than was possible in , and learn correspondingly sharper things. I
describe how I generated the following figures, in the hope that my reader will
be thus encouraged to undertake some hands-on exploration. One begins by
describing (and giving names to) the eigenfunctions in which one has interest:

F12[x-,y-]:=Sin[Pi*1*x]Sin[Pi*2*y]-Sin[Pi*2*x]Sin[Pi*1*y]
F23[x-,y-]:=Sin[Pi*2*x]Sin[Pi*3*y]-Sin[Pi*3*x]Sin[Pi*2*y]
F49[x-,y-]:=Sin[Pi*4*x]Sin[Pi*9*y]-Sin[Pi*9*x]Sin[Pi*4*y]

27 Methods of Theoretical Physics I , p. 756. They remark that “the analysis
[of eigenfunctions in several dimensions] is rather more involved when
the equation is not separable in coordinates suitable for the boundary.
Unfortunately only two nonseparable cases have been solved in detail, one for
a boundary which is an isosceles right triangle. This is probably too simple to
bring out all the complexities; nevertheless it is worth some discussion.” They
make the ensuing discussion more complicated than it need be by placing the
right angle at the origin. And unaccountably, they neglect to identify the “other
case.”
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Figure 18: Contour plot of the state Ψ23(x1, x2).

Commands of the form

G23=ContourPlot[F23[x,y],{x,-1,1},{y,-1,1},PlotPoints->100]

then produce graphics of which Figure 18 is representative. Clarity is sometimes
served by eliminating the shading, which is accomplished by

H23=ContourPlot[F23[x,y],{x,-1,1},{y,-1,1},PlotPoints->100,
ContourShading->False]

with results such as are evident in Figure 19. To plot nodal lines one calls up
a standard package

<<Graphics‘ImplicitPlot‘

and enters the command

Nodes23=ImplicitPlot[F23[x,y]==0,{x,-1,1},{y,-1,1},
PlotPoints->150]
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Figure 19: Unshaded contour plots of the ground state Ψ12(x1, x2)
and—compare the preceding figure—of Ψ23(x1, x2).
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Figure 20: Nodal lines of the states Ψ23(x1, x2) and Ψ49(x1, x2).
Here as in both of the two preceding figures, the point {x1, x2} ranges
over the entire fundamental unit (physical box plus seven images)
and the scale parameter a has been set equal to unity.

A pair of such designs is shown in Figure 20.

Examination of such figures shows them to be most complex when n1 and
n2 share few common factors, and to exhibit a kind of scaling property when
n1 : n2 = 1 : 2. It is in all cases evident also that, as Morse & Feshbach
observe, the nodal lines “do not fall into two mutually orthogonal families” as
is the pattern in all separable cases.

7. Particle in an equilateral triangular box. The fundamental unit contains in this
case (see Figure 21) a total of six cells, which reproduce the tesselated plane by
non-orthogonal translation. It is from that non-orthogonality that the following
argument acquires its novelty, and its relative complexity.28 Elaborating upon
the notation introduced in Figure 23, we note that the sequences

xxx0 −→ xxx2 −→ xxx4 and xxx5 −→ xxx1 −→ xxx3

are achieved by action of the 120◦ rotation matrix

R = 1
2

(
−1 −

√
3√

3 −1

)

28 It is interesting to note that (see Figure 22) orthogonality can be purchased
by doubling the size of the fundamental unit : complexity excluded at the front
door thus gains entry by a sidedoor. These two modes of approach—which
amount simply to distinct methods of partitioning the same sum-over-paths—
give rise to arguments the details of which look initially quite different, but
which ultimately converge. What we have encountered is the first vivid evidence
of a circumstance that in fact pertains quite generally: the definition of the
fundamental unit is always, to some degree, conventional .
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Figure 21: The 6-element fundamental unit of the equilateral
triangular box problem. Note the non-orthogonality of the associated
translation vectors.

Figure 22: An alternative 12-element fundamental unit that
reproduces the tesselated plane by orthogonal translation.

while xxx0 −→ xxx5 is achieved by reflection in the line defined by the 60◦ unit
vector

eee = 1
2

(
1√
3

)
To accomplish the latter objective we form the matrix

P =
(
e1e1 e1e2
e2e1 e2e2

)
= 1

4

(
1

√
3√

3 3

)
that projects onto eee; we note that every xxx can be resolved

xxx = Pxxx+ (I − Pxxx) = xxxpara + xxx⊥
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Figure 23: The 6-element fundamental unit of the equilateral box
problem, and associated notations. Again things have been rigged
so as to achieve

parity of xxxα = (−)α

Scale is set by
a ≡ length of each side

and the box therefore has

area = 1
4

√
3a2

and that reflection in the eee-line produces

xxxreflected = xxxpara − xxx⊥ = (2P − I)︸ ︷︷ ︸xxx
≡ Q is an improper rotation matrix

In the present instance

Q = 1
2

(
−1

√
3√

3 1

)
From the preceding remarks we are led to the following equations:
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xxx0 =
(

+1 0
0 +1

)
xxx with xxx ≡

(
x1

x2

)

xxx1 = 1
2

(
−1 −

√
3

−
√

3 +1

)
xxx0

xxx2 = 1
2

(
−1 −

√
3

+
√

3 −1

)
xxx0

xxx3 =
(

+1 0
0 −1

)
xxx0

xxx4 = 1
2

(
−1 +

√
3

−
√

3 −1

)
xxx0

xxx5 = 1
2

(
−1 +

√
3

+
√

3 +1

)
xxx0

The non-orthogonal translation vectors are (reading from the figure) given by

TTT 1 = a
2

(
3

+
√

3

)
and TTT 2 = a

2

(
3

−
√

3

)
and have lengths

T1 = T2 =
√

3a

Moreover
TTT 1 · TTT 2 = 3

2a
2 = T1T2 cos 60◦

so we have

T = 3
2a

2

(
2 1
1 2

)
det T = 3 ·

(
3
2a

2
)2

T –1 =
(

3
2a

2
)−1

(
2
3 − 1

3

− 1
3

2
3

)

Our simplified Feynman formalism now supplies

K(xxx, t;yyy, 0) = m
iht

5∑
α=0

(−)α
∑
nnn

exp
{

i
�
Sα

}
i
�
Sα = β(vvvα+ nnn) ·T (vvvα+ nnn)

where the vectors vvvα were defined at (27); it proves convenient to postpone for
a moment their actual evaluation. The argument which (by appeal to Jacobi’s
identity) gave us (39) now gives us

= m
iht

√(
− π

β

)2 1
det T︸ ︷︷ ︸

5∑
α=0

(−)α ϑ
(
πvvvα,

π
iβT –1

)
(45)

= 1√
3( 3

2a
2)

= 1
6·area = 1

area of fundamental unit
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Because T in non-diagonal we cannot (as in previous cases) immediately invoke
the factorization principle (38) but must work a bit before we can extract useful
information from (45). Recalling from (35) the definition

ϑ(zzz,W) ≡
∑
nnn

eiπnnn ·Wnnne−2innn ·zzz

of ϑ(zzz,W), we observe that only the even part of the second factor contributes
to the extended sum,29 so we have (compare (7))

ϑ(zzz,W) =
∑
nnn

eiπnnn ·Wnnn cos 2nnn·zzz (46)

Returning with (46) to (45), we have

K(xxx, t;yyy, 0) = 1
6·area

5∑
α=0

(−)α
∑
nnn

eiπnnn ·Wnnn cos 2πnnn·vvvα

where

W = π
iβT –1 = τ

(
2 −1

−1 2

)
with τ = − 1

3
ht

3
2ma2

entails

iπW = − i
�
Et with E ≡ 1

2E

(
2 −1

−1 2

)
and E ≡ 1

3
h2

3
2ma2

It now follows (use nnn·Ennn = E(n2
1 − n1n2 + n2

2) and interchange the order of
summation) that

K(xxx, t;yyy, 0) = 1
6·area

∑
nnn

e−
i
�
E(n2

1−n1n2+n2
2) t

5∑
α=0

(−)α cos 2πnnn·vvvα (47)

Turning our attention now to evaluation of the
∑

α, we first construct (with
major assistance from Mathematica) the vectors vvvα and obtain results which
make natural the introduction of the following dimensionless variables:

X0 ≡ π
3a ( 2x1) Y0 ≡ π

3a ( 2y1)

X1 ≡ π
3a (−x1 +

√
3x2) Y1 ≡ π

3a (−y1 +
√

3y2)

X2 ≡ π
3a (−x1 −

√
3x2) Y2 ≡ π

3a (−y1 −
√

3y2)

These definitions are, by the way, reminiscent of the equations that describe
the cube roots of unity, and entail

X0 +X1 +X2 = 0

X2
0 +X2

1 +X2
2 = 6( π

3a )2(x2
1 + x2

2)

29 I allude with this phrase to the fact that the points {±nnn} lie at the vertices
of a hypercube in nnn-space; diametrically opposite points cancel pairwise in
consequence of the oddness of the sine function.
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The results reported by Mathematica can in this notation be described

−πvvv0 =
(
X2−Y2

X1−Y1

)

−πvvv1 =
(
X0−Y2

X1−Y1

)

−πvvv2 =
(
X1−Y2

X0−Y1

)

−πvvv3 =
(
X1−Y2

X2−Y1

)

−πvvv4 =
(
X0−Y2

X2−Y1

)

−πvvv5 =
(
X2−Y2

X0−Y1

)

From these highly patterned30 equations it follows that

5∑
α=0

(−)α cos 2πnnn·vvvα = + cos 2[n1(X2 − Y2) + n2(X1 − Y1)]
− cos 2[n1(X0 − Y2) + n2(X1 − Y1)]
+ cos 2[n1(X1 − Y2) + n2(X0 − Y1)]
− cos 2[n1(X1 − Y2) + n2(X2 − Y1)]
+ cos 2[n1(X0 − Y2) + n2(X2 − Y1)]
− cos 2[n1(X2 − Y2) + n2(X0 − Y1)]

= + cos 2[(n1X2 + n2X1) − (n1Y2 + n2Y1)]
− cos 2[(n2X2 + n1X1) − ( ditto )]
+ cos 2[(n1X1 + n2X0) − ( ditto )]
− cos 2[(n2X1 + n1X0) − ( ditto )]
+ cos 2[(n1X0 + n2X2) − ( ditto )]
− cos 2[(n2X0 + n1X2) − ( ditto )]

It is elementary that

cos 2(A−C)−cos 2(B−C) = (cos 2A−cos 2B) cos 2C+(sin 2A− sin 2B) sin 2C

= −2 sin(A+B) sin(A−B) cos 2C + 2 cos(A+B) sin(A−B) sin 2C

so after some slight rearrangement we have

30 Look, in reference to Figure 23, to the relation of vvv0 to vvv3, of vvv2 to vvv1, of
vvv4 to vvv5. And to the sequences vvv0 → vvv2 → vvv4, vvv1 → vvv3 → vvv5. One gains the
impression that the equations could almost have been written directly—without
calculation.
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5∑
α=0

(−)α cos 2πnnn·vvvα = −2F · cos 2[n1Y2 + n2Y1]− 2G · sin 2[n1Y2 + n2Y1] (48)

where the abbreviations F and G are defined

F ≡ sin[(n1 + n2)(X2 +X1)] sin[(n1 − n2)(X2 −X1)]
+ sin[(n1 + n2)(X0 +X2)] sin[(n1 − n2)(X0 −X2)]
+ sin[(n1 + n2)(X1 +X0)] sin[(n1 − n2)(X1 −X0)]

G ≡− cos[(n1 + n2)(X2 +X1)] sin[(n1 − n2)(X2 −X1)]
− cos[(n1 + n2)(X0 +X2)] sin[(n1 − n2)(X0 −X2)]
− cos[(n1 + n2)(X1 +X0)] sin[(n1 − n2)(X1 −X0)]

Returning with (48) to (47), we obtain a description of K(xxx, t;yyy, 0) which still
only faintly resembles the (3) from which it is our objective to read off the
eigenvalues and eigenfunctions of an equilaterally confined quantum particle.
It is in an effort to enhance the resemblance that we undertake the following
manipulations.

Let dimensionless vectors ξξξ and ζζζ be defined

ξ1 ≡ π
3ax1 ζ1 ≡ π

3ay1

ξ2 ≡ π
3a

√
3x2 ζ2 ≡ π

3a

√
3y2

in which notation

X0 = 2ξ1 Y0 = 2ζ1
X1 = −ξ1 + ξ2 Y1 = −ζ1 + ζ2

X2 = −ξ1 − ξ2 Y2 = −ζ1 − ζ2

permit us to write

F = Fnnn(ξ1, ξ2) ≡ sin[(n1 + n2)(2ξ1)] sin[(n1 − n2)(2ξ2)]
− sin[(n1 + n2)(ξ1 + ξ2)] sin[(n1 − n2)(3ξ1 − ξ2)]
+ sin[(n1 + n2)(ξ1 − ξ2)] sin[(n1 − n2)(3ξ1 + ξ2)] (49.1)

G = Gnnn(ξ1, ξ2) ≡ cos[(n1 + n2)(2ξ1)] sin[(n1 − n2)(2ξ2)]
+ cos[(n1 + n2)(ξ1 + ξ2)] sin[(n1 − n2)(3ξ1 − ξ2)]
− cos[(n1 + n2)(ξ1 − ξ2)] sin[(n1 − n2)(3ξ1 + ξ2)] (49.2)

When (47) is written

K(xxx, t;yyy, 0) = − 2
6·area

∑
nnn

{
e−

i
�
E(n2

1−n1n2+n2
2) tFnnn(ξ1, ξ2)

}
cos 2[n1Y2 + n2Y1]

− 2
6·area

∑
nnn

{
e−

i
�
E(n2

1−n1n2+n2
2) tGnnn(ξ1, ξ2)

}
sin 2[n1Y2 + n2Y1]
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it becomes evident that, since the expressions within braces are both
{n1n2}-antisymmetric, only the antisymmetric parts of cos 2[etc.] and sin 2[etc.]
actually contribute to the

∑
nnn , and those are given by

1
2

{
cos 2[n1Y2 + n2Y1] − cos 2[n2Y2 + n1Y1]

}
= − sin[(n1 + n2)(Y2 + Y1)] sin[(n1 − n2)(Y2 − Y1)]
= − sin[(n1 + n2)(2ζ1)] sin[(n1 − n2)(2ζ2)]

1
2

{
sin 2[n1Y2 + n2Y1] − sin 2[n2Y2 + n1Y1]

}
= + cos[(n1 + n2)(Y2 + Y1)] sin[(n1 − n2)(Y2 − Y1)]
= − cos[(n1 + n2)(2ζ1)] sin[(n1 − n2)(2ζ2)]

We are in position therefore to write

K(xxx, t;yyy, 0) = 2
6·area

∑
nnn

e−
i
�
E(n2

1−n1n2+n2
2) t (50)

×
{

Fnnn(ξ1, ξ2) · sin[(n1 + n2)(2ζ1)] sin[(n1 − n2)(2ζ2)]

+Gnnn(ξ1, ξ2) · cos[(n1 + n2)(2ζ1)] sin[(n1 − n2)(2ζ2)]
}

and to notice that the factor that multiplies Fnnn(ξ1, ξ2) is the exact ζ-analog of
one of the three terms that enters into the definition (49.1) of Fnnn(ξ1, ξ2), and
that a similar remark pertains to the factor that multiplies Gnnn(ξ1, ξ2). We have
therefore moved closer to our goal—which is to achieve structural imitation of
(3)—but to realize that goal we must introduce one fundamentally new idea:

8. Sum over spectral symmetries. Look to the exponent in (50), where we
encounter

n2
1 − nnn2 + n2

2 = 1
2nnn

T

(
2 −1

−1 2

)
nnn

The following equations(
2 −1

−1 2

) (
1
1

)
= 1 ·

(
1
1

)
and

(
2 −1

−1 2

) (
1

−1

)
= 3 ·

(
1

−1

)
summarize the spectral properties of the symmetric matrix, and put us in
position to write(

2 −1
−1 2

)
= 1

2 ·
(

1 1
1 −1

)T (
1 0
0 3

) (
1 1
1 −1

)
The immediate implication is that

n2
1 − nnn2 + n2

2 = 1
4 n̂nn

T

(
1 0
0 3

)
n̂nn with n̂nn ≡

(
1 1
1 −1

)
nnn

= 1
4

[
(n1 + n2)2 + 3(n1 − n2)2

]
(51)

= 1
4

[
n̂2

1 + 3n̂2
2

]︸ ︷︷ ︸ = 1
4 (n̂1 + i

√
3n̂2)(n̂1 − i

√
3n̂2)

≡ N(n̂nn)
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I interrupt the argument to comment that the matrix

Z ≡
(

1 1
1 −1

)
=

√
2 · {improper 45◦ rotation matrix}

possesses the property that (since it has integral elements) it maps

lattice vectors �−→ lattice vectors

Its specific action is illustrated in Figure 24, and it arises also in the connection
described in Figure 25. Orthogonality is such a natural idea that it can be
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Figure 24: The integers n̂1 = n1 + n2 and n̂2 = n1 − n2 describe
points of the nnn-lattice if and only if they are either both even or both
odd; when of opposite parity they refer to the “interstitial lattice.”

expected to enter spontaneously into the discussion—as, indeed, it has; it
was not introduced “by hand” (as would have been the case had we opted
to take the 12-element fundamental unit as our starting point), hinges upon no
explicit appeal to the factorization principle (38), and the occurance of Z—the
“orthogonalizer”—is simply its defining symptom.
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T

T
T

T

Figure 25: The orthogonal translation vectors {T̂TT 1, T̂TT 2} associated
with the 12-element fundamental unit (Figure 22) stand evidently
in this relation to the non-orthogonal translation vectors {TTT 1, TTT 2}
associated with the 6-element fundamental unit (Figure 21):

T̂TT 1 = TTT 1 + TTT 2

T̂TT 2 = TTT 1 − TTT 2

; i.e.,
(
T̂TT 1

T̂TT 2

)
= Z

(
TTT 1

TTT 2

)

The entry of Z into our argument represents a kind of “spontaneous
crosstalk” between the 6-element and 12-element formulations of the
theory.

Equation (51) clinches what has recently become increasingly evident: the
indices {n̂1, n̂2} are—it is now clear—more neatly adapted to our problem than
are the “natural” indices {n1, n2}. Their introduction permits the following
notational simplifications of (50) and (49):

K(xxx, t;yyy, 0) = 1
3·area

∑
n̂nn

′
e−

i
�
E 1

4 (n̂2
1+3n̂2

2)t
{

F̂ n̂nn(ξ1, ξ2) · sin[2n̂1ζ1] sin[2n̂2ζ2] (52)

+Ĝn̂nn(ξ1, ξ2) · cos[2n̂1ζ1] sin[2n̂2ζ2]
}

where

F̂ n̂nn(ξ1, ξ2) ≡ sin[2n̂1ξ1] sin[2n̂2ξ2] − sin[n̂1(ξ1 + ξ2)] sin[n̂2(3ξ1 − ξ2)] (53.1)
+ sin[n̂1(ξ1 − ξ2)] sin[n̂2(3ξ1 + ξ2)]

Ĝn̂nn(ξ1, ξ2) ≡ cos[2n̂1ξ1] sin[2n̂2ξ2] + cos[n̂1(ξ1 + ξ2)] sin[n̂2(3ξ1 − ξ2)] (53.2)
− cos[n̂1(ξ1 − ξ2)] sin[n̂2(3ξ1 + ξ2)]

and where the
∑

wears a prime to signal that (see again Figure 24) only points n̂nn
for which n̂1 and n̂2 have the same parity participate in the summation process.

To tabulate the function N(n̂1, n̂2) ≡ n̂2
1 + 3n̂2

2 is to be struck by the fact
that N assumes identical values at patterned arrays of distinct points on the
n̂nn -lattice. My immediate objective will be to identify/describe those patterns.
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We will then be in position to regroup the terms that contribute to the sum
(52), and to achieve our desired result. To that end I observe that the following
equations

sin(a1z1 + a2z2) sin(b1z1 + b2z2) − sin(a1z1 − a2z2) sin(b1z1 − b2z2)
= sin(a1 + b1)z1 sin(a2 + b2)z2 − sin(a1 − b1)z1 sin(a2 − b2)z2

(54)
cos(a1z1 + a2z2) sin(b1z1 + b2z2) − cos(a1z1 − a2z2) sin(b1z1 − b2z2)

= cos(a1 + b1)z1 sin(a2 + b2)z2 − cos(a1 − b1)z1 sin(a2 − b2)z2

have the status of identities, which (once stated) are very easy to prove.31 Using
the first of these identities to manipulate the last two terms on the right side
of (53.1), and the second to manipulate the last two terms on the right side of
(53.2), we obtain (after some slight adjustment)

F̂ n̂nn(ξ1, ξ2) = sin[2n̂1ξ1] sin[2n̂2ξ2] + sin[2−n̂1+3n̂2
2 ξ1] sin[2−n̂1−n̂2

2 ξ2]

+ sin[2−n̂1−3n̂2
2 ξ1] sin[2+n̂1−n̂2

2 ξ2]

Ĝ n̂nn(ξ1, ξ2) = cos[2n̂1ξ1] sin[2n̂2ξ2] + cos[2−n̂1+3n̂2
2 ξ1] sin[2−n̂1−n̂2

2 ξ2]

+ cos[2−n̂1−3n̂2
2 ξ1] sin[2+n̂1−n̂2

2 ξ2]

and are motivated by the structure of these results to write

1
2

(
(−n̂1 + 3n̂2)
(−n̂1 − n̂2)

)
= A

(
n1

n2

)
with A ≡ 1

2

(
−1 +3
−1 −1

)
1
2

(
(−n̂1 − 3n̂2)
(+n̂1 − n̂2)

)
= B

(
n1

n2

)
with B ≡ 1

2

(
−1 −3
+1 −1

)

 (55)

The matrices A and B are unimodular

det A = det B = 1

and their shared characteristic polynomial

det(A − λI) = det(B − λI) = λ2 + λ+ 1 ≡ ϕ(λ)

is “cyclotomic.”32 The roots of ϕ(λ) are the complex cube roots of unity:

ϕ(λ) = 0 =⇒ λ =
−1 ±

√
−3

2
= e±i 2

3π

31 I omit the proofs, but see pp. 104, 175 & 213 of the research notes cited in
Footnote 18.

32 Which is to say: it has the form λp−1 +λp−2 + · · ·+1 with p an odd prime;
see p. 55 of H. Pollard, The Theory of Algebraic Numbers ().
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By the Cayley-Hamilton theorem

A2 + A + I = O

From this it follows that

A2 = −A − I

= B by inspection

and that A3 = −A2 − A

= I

Evidently A–1 = B. More immediately to the point, we by quick calculation
have

ATGA = G with G ≡
(

1 0
0 3

)
from which it follows that N(n̂nn) = n̂nnT

G n̂nn is invariant under the action of A:33

N(n̂nn) = N(An̂nn) = N(A2n̂nn) (56)

The same (to return to our starting point) can be said of the functions F̂ n̂nn(ξ1, ξ2)
and Ĝn̂nn(ξ1, ξ2), and is made manifest if we introduce

f n̂nn(ξ1, ξ2) ≡ sin[2n̂1ξ1] sin[2n̂2ξ2]
g n̂nn(ξ1, ξ2) ≡ cos[2n̂1ξ1] sin[2n̂2ξ2]

}
(57)

and write

F̂ n̂nn(ξ1, ξ2) = f n̂nn(ξ1, ξ2) + fA n̂nn(ξ1, ξ2) + fA2 n̂nn(ξ1, ξ2)

Ĝn̂nn(ξ1, ξ2) = g n̂nn(ξ1, ξ2) + gA n̂nn(ξ1, ξ2) + gA2 n̂nn(ξ1, ξ2)

}
(58)

The meaning of my section title (see the top of the page) begins at this point
to become clear.

Equation (56) to exhaust the invariance structure of N(n̂nn); trivially, one
has invariance also under the reflective transformations(

n̂1

n̂2

)
�−→

(
−n̂1

+n̂2

)
, else

(
+n̂1

−n̂2

)
, else

(
−n̂1

−n̂2

)

33 Check it out; we find that indeed

n̂2
1 + 3n̂2

2 =
(−n̂1 + 3n̂2

2

)2

+ 3
(−n̂1 − n̂2

2

)2

=
(−n̂1 − 3n̂2

2

)2

+ 3
(+n̂1 − n̂2

2

)2



48 2-dimensional “particle-in-a-box” problems in quantum mechanics

Each of the points n̂nn, An̂nn and Bn̂nn is a member, therefore, of a quartet . The
simplest way to generate/organize this 12-fold population of lattice points is to
introduce this “sixth root of unity”34

U ≡ −B = 1
2

(
+1 +3
−1 +1

)
and with its aid to form two interdigitated sextets, as follows:

n̂nn −→ Un̂nn −→ U2 n̂nn −→ U3 n̂nn −→ U4 n̂nn −→ U5 n̂nn −→ back to n̂nn

m̂mm −→ Um̂mm −→ U2m̂mm −→ U3m̂mm −→ U4m̂mm −→ U5m̂mm −→ back to m̂mm

}
(59)

m̂mm ≡
(

1 0
0 −1

)
n̂nn

To explore the meaning of (59) we ask Mathematica to compute

Table[MatrixForm[MatrixPower[{{ 1
2,

3
2},{− 1

2,
1
2}},p]

.{{a},{b}}],{p,0,5}]

and examine the output for various assignments of {a = n̂1, b = n̂2}. A pattern
quickly emerges. Suppose in the first place that the “seed” n̂nn lies on the n̂1-axis;
(59) gives rise then to a population(

2n
0

)
→

(
n
−n

)
→

(
−n
−n

)
→

(
−2n

0

)
→

(
−n
n

)
→

(
n
n

)
→

(
2n
0

)
which contains only six members (each occurs twice). Associated with this
“nuclear population” of lattice points are the associated 12-element populations(

2n+ 3k
k

)
,

(
n+ 3k
n+ k

)
,

(
n

n+ 2k

)
plus 3 + 3 + 3 = 9 reflective companions

If, on the other hand, the “seed” n̂nn lies on the n̂2-axis, then (58) gives rise then
to the nuclear sextet(

0
2n

)
→

(
3n
n

)
→

(
3n
−n

)
→

(
0

−2n

)
→

(
−3n
−n

)
→

(
−3n
n

)
→

(
0
2n

)
in association with which we have the 12-element populations(

k
2n+ k

)
,

(
3n+ k
n+ k

)
,

(
3n+ 2k

n

)
plus 3 + 3 + 3 = 9 reflective companions

Here the parameters n and k range on the non-negative integers; we note that
the substitutional interchange n ↔ k sends the first 12-element population into
the second, and vice versa. Figures 26–29 are intended to make vivid (which is
to say, intelligible) the patterns brought thus to light.

34 The idea here is elementary: if α ≡ ei
1
3 2π and β ≡ ei

2
3 2π are complex cube

roots of unity, then (as a simple figure makes clear) γ ≡ −β = ei
1
6 2π is the

leading sixth root of unity. From U3 = (−B)3 = −I it follows, of course, that

U6 = I
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Figure 26: The figure on the left shows several 6-element “nuclear
populations” that sprout from “seeds” planted on the n̂1-axis; on
the right the seeds are planted on the n̂2-axis. Only same-parity
elements of the n̂nn-lattice are shown, since only those correspond to
points of the nnn-lattice.

Figure 27: The populations that radiate (k = 1, 2, 3, . . .) from
the nuclear populations shown in the preceding figure. Only the
positive quadrant is shown; the patterns continue reflectively into
other quadrants.

The emergent picture is summarized in Figure 28, and explained in the caption.

Looking again to the description (52) of K(xxx, t;yyy, 0), the idea now is to
write ∑

n̂nn

′
=

∑′

wedge points

{∑
orbit identified by a wedge point

}
︸ ︷︷ ︸
“sum over spectral symmetries”
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Figure 28: The same-parity sublattice of the n̂nn-lattice is divided
into twelve sectors. An arbitrarily selected sector (shaded) will be
called the “fundamental sector” or “wedge.” To each of the points
in the interior of the wedge corresponds one point in each of the
other eleven sectors; collectively, those comprise the elements of a
12-point “orbit.” To points on the “edge of the wedge” correspond
a quintet of points on alternating sector boundaries, as illustrated
in Figure 26; collectively, those comprise the elements of a 6-point
orbit. Orbits are inscribed within ellipses of the form n̂2

1+3n̂2
2 = N .

The algebraic meaning of an “orbital tour” is provided by (59).

The idea is elementary—it is the lattice analog of the introduction of polar
coordinates to perform

∫∫
dxdy in the presence of rotational symmetry—but

its success hinges on the details; we can (since N(n̂nn) ≡ n̂2
1 + 3n̂2

2 is constant on
each orbit) write

K(xxx, t;yyy, 0) = 1
3·area

∑
wedge

′
e−

i
�
E 1

4N(n̂nn) t
∑
orbit

{
F̂ n̂nn(ξξξ)f n̂nn(ζζζ) + Ĝ n̂nn(ξξξ)g n̂nn(ζζζ)

}

It follows, moreover, from the established principles of orbital design that

∑
orbit

F̂ n̂nn(ξξξ)f n̂nn(ζζζ) = F̂ n̂nn(ξξξ)
[
f n̂nn(ζζζ) + fAn̂nn(ζζζ) + fA2n̂nn(ζζζ)

]︸ ︷︷ ︸ +reflective variants

= F̂ n̂nn(ζζζ)∑
orbit

Ĝ n̂nn(ξξξ)g n̂nn(ζζζ) = Ĝ n̂nn(ξξξ)Ĝ n̂nn(ζζζ) + reflective variants

Concerning those “reflective variants:” it is an implication of the descriptions
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of F̂ n̂nn(ξξξ) and Ĝ n̂nn(ξξξ) which appear on p. 46 that

n̂nn �−→ m̂mm ≡
(
−n̂1

n̂2

)
induces

{
F̂ n̂nn(ξξξ) �−→ F̂m̂mm(ξξξ) = − F̂ n̂nn(ξξξ)
Ĝ n̂nn(ξξξ) �−→ Ĝm̂mm(ξξξ) = +Ĝ n̂nn(ξξξ)

n̂nn �−→ m̂mm ≡
(

n̂1

−n̂2

)
induces

{
F̂ n̂nn(ξξξ) �−→ F̂m̂mm(ξξξ) = − F̂ n̂nn(ξξξ)
Ĝ n̂nn(ξξξ) �−→ Ĝm̂mm(ξξξ) = −Ĝ n̂nn(ξξξ)


 (60)

If n̂nn lies interior to the wedge then it follows from (60) that

F̂ n̂nn(ξξξ)F̂ n̂nn(ζζζ) + reflective variants =
{
1 + (−)2 + (−)2 + (−)2(−)2

}
F̂ n̂nn(ξξξ)F̂ n̂nn(ζζζ)

= 4 F̂ n̂nn(ξξξ) F̂ n̂nn(ζζζ)

Ĝn̂nn(ξξξ)Ĝn̂nn(ζζζ) + reflective variants =
{
1 + (−)2 + (+)2 + (−)2(+)2

}
Ĝn̂nn(ξξξ)Ĝn̂nn(ζζζ)

= 4Ĝn̂nn(ξξξ)Ĝn̂nn(ζζζ)

If, on the other hand, n̂nn lies on the either edge of the wedge then there are, in
either case, only five “reflective variants” to be considered; explicit summation
over the points indicated in Figure 26 and described on p. 49 (from which task
Mathematica removes all the tedium and risk of error) establishes that

F̂n̂nn(ξξξ) F̂n̂nn(ζζζ) + reflective variants
Ĝn̂nn(ξξξ)Ĝn̂nn(ζζζ) + reflective variants

}
= 0 : n̂nn on edge of wedge

We therefore have

K(xxx, t;yyy, 0) =
∑

wedge

′′
e−

i
�
E 1

4N(n̂nn) t 4
3·area

{
F̂n̂nn(ξξξ) F̂n̂nn(ζζζ) + Ĝn̂nn(ξξξ) Ĝn̂nn(ζζζ)

}

where 4
3·area = 16

3
√

3a2 and where the double prime signals that
∑

ranges on
same-parity lattice points n̂nn confined to the interior of the wedge. We have at
this point achieved our ultimate objective, for we have only to write

E(n̂nn) ≡ h2

18ma2

(
n̂2

1 + 3n̂2
2

)
and Ψn̂nn(xxx) ≡

√
16

3
√

3a2

{
Ĝn̂nn(ξξξ) + iF̂n̂nn(ξξξ)

}
(61)

to obtain
K(xxx, t;yyy, 0) =

∑
wedge

′′
e−

i
�
E(n̂nn) tΨn̂nn(xxx)Ψ∗

n̂nn(yyy) (62)

—which is an instance of (3).

9. Properties of the spectrum & eigenfunctions. The real and imaginary parts
of the eigenfunction Ψn̂nn(xxx)—heretofore known (apart from a normalization
factor) as Ĝn̂nn(ξξξ) and F̂n̂nn(ξξξ) respectively—are, for the most elementary of general
reasons, individually eigenfunctions of the Schrödinger equation. It follows that
each of the eigenvalues E(n̂nn) is (in the absence of accidental degeneracy) doubly
degenerate.



52 2-dimensional “particle-in-a-box” problems in quantum mechanics

The linear boundaries of the equilateral box in physical xxx-space can, in
terms of the dimensionless variables ξξξ introduced on p. 42, be described

ξ2 = +3ξ1, ξ2 = −3ξ2 and ξ2 = 1
2π

It follows readily from (53) that Ĝn̂nn(ξξξ) and F̂n̂nn(ξξξ) both vanish on each of those
lines, provided n̂1 and n̂2 are either both even or both odd.

It follows also immediately from the unnumbered equations displayed in
the middle of p. 46 that (compare (60))

Ĝn̂nn(ξξξ) is an even function of ξ1, while F̂n̂nn(ξξξ) is odd;

Ĝn̂nn(ξξξ) and F̂n̂nn(ξξξ) are both odd functions of ξ2

}
(63)

These facts are vividly evident in Figure 30,35 of which the following figure
provides a kind of abstracted cartoon:

Figure 29: Abstract of the figure pairs of which Figure 30 provides
a particular (ground states) instance. Note that the triangles in
upper left and upper right can, in each instance, be obtained by
rotation of the central (physical) triangle.

I invite my reader to use techniques previously described, and results now
in hand, to construct (for various values of n̂nn) analogs of Figure 20; i.e., to
construct maps of the nodal lines characteristic of Ψn̂nn(xxx).

35 To produce the figure I used the just-mentioned unnumbered equations
to define G[m-,n-,x-,y-] and F[m-,n-,x-,y-], and into the command that
produced Figure 18 introduced the option AspectRatio->1/Sqrt[3]] so as to
achieve a result scaled as it would appear if drawn in physical xxx-space.
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Figure 30: Contour plots of the real and imaginary parts of the
ground state Ψ51(xxx)—contour plots, that is to say, of the even and
odd ground states—of a quantum particle in an equilateral box. The
identity

n̂nn =
(

5
1

)
of the ground state was read from Figure 28, and corresponds (see
Figure 24) to the point

nnn = 1
2

(
1 1
1 −1

)
n̂nn =

(
3
2

)

on our original nnn-lattice. In both figures the physical box lies top
center, with vertices at 11 o-clock, 1 o-clock and the origin.
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It is intuitively evident that if the second of the following figures describes
an eigenfunction, then so also do the first and third, and it is curious on its face
that F̂n̂nn(ξξξ) speaks directly of the former but appears to discriminate against
the latter two possibilities. Resolution of this little paradox puts us in touch

Figure 31: Rotated companions of the central odd eigenstate, who
live next door on the tesselated plane.

with the representation theory of the symmetry group of the equilateral box. It
has been remarked already (see again the caption to Figure 29) that rotation
within the physical box is equivalent to translation on the tesselated plane.
Noting that

xxx �−→ xxx±
(
a
0

)
⇐⇒ ξξξ �−→ ξξξ ±

(
1
3π
0

)
we by elementary calculation obtain

F̂n̂nn(ξ1 ± 1
3π, ξ2) = cos θ · F̂n̂nn(ξ1, ξ2) ± sin θ · Ĝn̂nn(ξ1, ξ2)

Ĝn̂nn(ξ1 ± 1
3π, ξ2) = ∓ sin θ · F̂n̂nn(ξ1, ξ2) + cos θ · Ĝn̂nn(ξ1, ξ2)

θ ≡ 2π
3 n̂1 = 120◦n̂1

provided n̂1 and n̂2 are (as their hats indicate them to be) either both even or
both odd. In short, the functions F̂n̂nn(ξξξ) and Ĝn̂nn(ξξξ) fold among themselves in
such a way as to achieve—for each given/fixed value of n̂nn—a representation(

F̂n̂nn(ξξξrotated)
Ĝn̂nn(ξξξrotated)

)
= rotation matrix ·

(
F̂n̂nn(ξξξ)
Ĝn̂nn(ξξξ)

)

= cos θ · + sin θ ·

of the group of equilateral symmetries (which is, by the way, clearly isomorphic
to the group of permutations on three objects). I suspect that the established
principles of group representation theory are in themselves sufficient to yield
many of our results, but have elected not to pursue this line of inquiry.
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The eigenfunctions discussed above derive both their distinctive functional
structure and the pattern of their interrelationships from a “sum over spectral
symmetries.” I turn now to discussion to two relatively covert properties of
the equilateral box spectrum. The first has to do with the number-theoretic
mechanism that underlies “accidental degeneracy.” The second—which is more
geometrical in flavor—has as its objective the (approximate) description of the
“density of states.” Looking first to the former. . .

We have (see again (61)) E(n̂nn) = h2

18ma2N(n̂nn) and look therefore to the
properties of

N(n̂nn) = N(n̂1, n̂2) = n̂2
1 + 3n̂2

2

with n̂nn an equi-parity point interior to the wedge (see again Figure 28). Values
assumed by the function N(n̂nn) near the vertex of the wedge are displayed in
Table 1. To allude (in illustrative connection with the ground state) to the
pretty fact that

28 = 52 + 3 · 12 = 42 + 3 · 22 = 12 + 3 · 32

is to allude to a symmetry (see again Figure 27) which pertains universally to
the physical system here under discussion. What I have now in mind are the
exceptional cases of which

364 = 172 + 3 · 52 = 162 + 3 · 62 = 12 + 3 · 112

= 192 + 3 · 12 = 112 + 3 · 92 = 82 + 3 · 102

provides the leading example. In the previous example, only
(

5
1

)
lay interior

to the wedge;
(

4
2

)
,
(

1
3

)
and all their reflective companions lay in other sectors,

external to the wedge. But in the example of immediate interest
(

17
5

)
and

(
19
1

)
both lie internal to the wedge. How is this phenomenon to be accounted for?
Following the lead of Ray Mayer (who solved the problem literally overnight,
and rendered instantly obsolete the fragmentary insights I had gained by a lot
of “experimental numerology”), we begin by noting it to be an implication of

N(2m, 2n) = 4(m2 + 3n2)

N(2m+ 1, 2n+ 1) = 4(m2 + 3n2) + 4(m+ 3n) + 4

N(2m+ 1, 2n) = 4(m2 + 3n2) + 4m+ 1

N(2m, 2n+ 1) = 4(m2 + 3n2) + 4(3n) + 3

that

N(n̂1, n̂2) ≡
{

0 (mod 4) if n̂1 and n̂2 have the same parity
±1 (mod 4) otherwise

Therefore
N(n̂nn) = 4α · product of odd primes
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∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

844

732

628

532

444

364

292

228

172

124

84

52

28

∗ ∗ ∗

912

796

688

588

496

412

336

268

208

156

112

76

∗ ∗ ∗

868

756

652

556

468

388

316

252

196

148

∗ ∗ ∗

948

832

724

624

532

448

372

304

244

∗ ∗ ∗

916

804

700

604

516

436

364

∗ ∗ ∗

1008

892

784

684

592

508

∗ ∗ ∗

988

876

772

676

∗ ∗ ∗

1092

976

868

∗ ∗ ∗

1084

∗ ∗ ∗

∗ ∗ ∗

Table 1: Values assumed by N(n̂1, n̂2) = n̂2
1+3n̂2

2 on the interior of
the wedge. n̂1 ranges ↑ and n̂2 ranges → on {0, 1, 2, . . .}. Repeated
entries are in boldface, and are the entries of special interest.
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when n̂nn is an equi-parity lattice point (which is to say: a lattice point of physical
relevance). Next we marshal some classical facts of a sort more likely to be
familiar to mathematicians than to physicists:36

• If P is a prime > 3, then P ≡ ±1 (mod6).37 In the former case I
will say “P is a prime of type p,” and in the latter case “. . . a prime
of type q.”

• Every p -prime (but no q -prime) can be written

p = m2 + 3n2

and is therefore “composite” in the sense

p = (m+ jn)(m− jn)

j ≡
√
−3 by extension of the notation i ≡

√
−1

= “norm” ωω̄ of the algebraic number ω ≡ m+ jn

Because p is odd, m and n have necessarily opposite parity. And
necessarily mn  = 0, which is to say: the lattice point

(
m
n

)
cannot

sit “on axis,” for statements of the form

prime = square or prime = 3 · square

are patently absurd.

The preceding ideas are displayed concretely in Table 2.

• The numbers 3 and 4 are exceptional in the sense that—though
neither is a p -prime—both admit of algebraic factorization in the
matter characteristic of p -primes:

3 = (0 + j)(0 − j)

4 = (2 + j0)(2 − j0) = (1 + j)(1 − j)

The striking non-unique factorization of 4 has an origin worthy of comment:
the algebraic number (not an algebraic integer)

U ≡ 1
2 (1 − j)

36 See, however, the proceedings (From Number Theory to Physics, edited by
P. Cartier et al) of the Les Houches Conference “Number Theory and Physics”
which took place in March, .

37 See G. H. Hardy & E. M. Wright, An Introduction to the Theory of
Numbers (4th edition, ), p. 13.
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Primes p ≡ +1 mod 6 Primes q ≡ −1 mod 6

7 = 22 + 3 · 12 5
13 = 12 + 3 · 22 17
19 = 42 + 3 · 12 23
31 = 22 + 3 · 32 29
37 = 52 + 3 · 22 41
43 = 42 + 3 · 32 47
61 = 72 + 3 · 22 53
67 = 82 + 3 · 12 59
73 = 52 + 3 · 42 71
79 = 22 + 3 · 52 83
97 = 72 + 3 · 42 89

109 = 12 + 3 · 62 101
127 = 102 + 3 · 32 107
139 = 82 + 3 · 52 113
151 = 22 + 3 · 72 131
157 = 72 + 3 · 62 137
163 = 42 + 3 · 72 149
181 = 132 + 3 · 22 167
193 = 12 + 3 · 82 173
199 = 142 + 3 · 12 179
211 = 82 + 3 · 72 191
223 = 142 + 3 · 32 197
229 = 112 + 3 · 62 227
241 = 72 + 3 · 82 233

239

Table 2: If P > 3 is prime then P ≡ ±1 (mod 6). Here that fact
has been used to resolve the primes 3 < P < 250 into two categories,
which I call “primes of type p” and “primes of type q” respectively.
The representations p = m2 + 3n2 were supplied by Mathematica:

<<NumberTheory‘NumberTheoryFunctions‘
QuadraticRepresentation[3,p]

See page 306 of Standard Add-on Packages 3.0 for useful references.
No q-prime admits of such representation, while the examples

4 = 12 + 3 · 12 = (1 + j1)(1 − j1)
7 = 12 + 3 · 42 = (1 + j4)(1 − j4)

demonstrate that not every (even/odd) number that does admit of
such representation is a p -prime.
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has the property that it sends

(m+ jn) → U · (m+ jn) = (m+3n
2 ) + j(−m+n

2 )

=

{ algebraic integer if m and n have same parity
but not otherwise, and not in particular when
ω = m+ jn is a factor of 3 or any p -prime

and thus reproduces the action of the matrix U encountered previously. We are
not surprised to discover that

U3 = −1 (therefore U6 = 1) and U has unit norm

Repeated application of U to the factor (2 + j0) of 4 yields (compare (59)) a
hexagonal loop of algebraic integers

(2 + j0) → (1 − j) → (−1 − j) → (−2 − j0) → (−1 + j) → (1 + j) → (2 + j0)

but
U · (factor of 3 or a p -prime) = not an algebraic integer

• (m1 + jn1)(m2 + jn2) = (m1m2 − 3n1n2) + j(m1n2 +m2n1) has
norm (m1m2−3n1n2)2+3(m1n2+m2n1)2 = (m2

1+3n2
1)(m

2
2+3n2

2),
so quite generally

norm of product = product of norms

It follows from results now in hand that every (necessarily even) number
of the form

N = 4α3βpµ1
1 · · · pµk

k : α = 1, 2, 3, . . .

can be written

= m2 + 3n2 with m and n either both even or both odd

And it is almost obvious38 that if q is a q -prime then

(m2 + 3n2) · qλ is expressible (m̃2 + 3ñ2) if an only if λ is even

We arrive thus at this representation theorem:

N(n̂nn) = n̂2
1 + 3n̂2

2 : n̂nn interior to the wedge (Figure 28)
= 4α3βpµ1

1 · · · pµk

k ·Q2 (64)
Q ≡ qν1

1 · · · qν�

 

Table 3 illustrates the concrete meaning of (64).

38 So nearly obvious that I omit the tediously number-theoretic proof; for
related discussion (in connection actually with the m2 + n2 problem) see for
example §11.1 in G. E. Andrews, Number Theory ().
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Prime factors of N(n̂nn)

28 = 4 · 7
52 = 4 · 13
76 = 4 · 19
84 = 4 · 3 · 7

112 = 42 · 7
124 = 4 · 31
148 = 4 · 37
156 = 4 · 3 · 13
172 = 4 · 43
196 = 4 · 72

208 = 42 · 13
228 = 4 · 3 · 19
244 = 4 · 61
252 = 4 · 32 · 7
268 = 4 · 67
292 = 4 · 73
304 = 42 · 19
316 = 4 · 79
336 = 42 · 3 · 7
364 = 4 · 7 · 13
372 = 4 · 3 · 31
388 = 4 · 97
412 = 4 · 103
436 = 4 · 109
444 = 4 · 3 · 37
448 = 43 · 7
468 = 4 · 32 · 13
496 = 42 · 31
508 = 4 · 127
516 = 4 · 3 · 43

Continuation

532 = 4 · 7 · 19
556 = 4 · 139
588 = 4 · 3 · 72

592 = 42 · 37
604 = 4 · 151
624 = 42 · 3 · 13
628 = 4 · 157
652 = 4 · 163
676 = 4 · 132

684 = 4 · 32 · 19
688 = 42 · 43
700 = 4 · 7 · 〈5〉2
724 = 4 · 181
732 = 4 · 3 · 61
756 = 4 · 33 · 7
772 = 4 · 193
784 = 42 · 72

796 = 4 · 199
804 = 4 · 3 · 67
832 = 43 · 13
844 = 4 · 211
868 = 4 · 7 · 31
876 = 4 · 3 · 73
892 = 4 · 223
912 = 42 · 3 · 19
916 = 4 · 229
948 = 4 · 3 · 79
964 = 4 · 241
976 = 42 · 61
988 = 4 · 13 · 19

Table 3: The entries have been taken (in ascending order) from
Table 1, and their factors displayed in conformity with (64). Only
one instance of a q -factor appears; it is the 〈5〉 at 700, and does
enter squared, as (64) stipulates.
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To uncover the mechanism by which spectral degeneracy emerges from
(64), let us for the moment suppose that all factors (except Q) enter with unit
multiplicity and that (as is the case with most of the entries in Table 3) only a
single p -prime is present; we then have

N(n̂nn) = n̂2
1 + 3n̂2

2 = 4 · 3 · p ·Q2 (65)
= (ω4ω̄4)(ω3ω̄3)(ππ̄) ·Q2

= (ΩΩ̄) ·Q2 with Ω ≡ ω4ω3π

≡ m+ jn

= (m2 + 3n2) ·Q2

= (Qm)2 + 3(Qn)2

where (see the following figure)

ω4 is one of the 6 factors of 4
ω3 is one of the 2 factors of 3 (66)
π is one of the 4 factors of p

Figure 32: Figures drawn on the (m,n)- lattice used to represent
algebraic integers ω = m + jn; open circles identify points where
m and n have the same parity, shaded circles identify points where
they have opposite parity. The figure on the left describes integers
with norm ωω̄ = 3; the central figure describes integers with ωω̄ = 4;
the figure on the right (ωω̄ = 7), with its rectangular arrangement of
odd-parity points, illustrates the pattern characteristic of all
p-primes. Both 3 and 4 are, in this respect and in their separate
ways, exceptional.

It is owing entirely to the universal presence in (64) of at least one 4-factor that
the coordinates

(
m
n

)
of Ω—whence also the coordinates

(
n̂1
n̂2

)
of QΩ —have the

same parity, and it is (as we have seen) owing to the latter circumstance that
the norm-preserving transformations Ω �→ UpowerΩ also preserve “integrality.”
And, of course, both norm and integrality are preserved by all sign-adjustments:

(
m
n

)
�−→




(
m

−n

)
: conjugation(−m

−n

)
: negation(−m

n

)
: their compose
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Thus, from a number-theoretic point of view, does Ω—which is to say n̂nn—
acquire its familiar eleven companions, as illustrated in Figure 28; one member
of that 12-element set lies invariably in the “physical wedge,” and by adroit
exercise of the options presented at (66) we can always arrange (as a matter of
convention) that it be Ω itself.

Serially relaxing now the restrictions that were written into (65), for
ascending powers of 3 we have

30 = ωω̄ : ω = 1 or negative
31 = ωω̄ : ω = j or conjugate
32 = ωω̄ : ω = 3 or negative
33 = ωω̄ : ω = j3 or conjugate

...

Evidently adjustments of the form 3 �→ 3power leave the architecture of preceding
results unaffected, and therefore cannot be a source of spectal multiplicity. Nor
can 4 �→ 4power>1, if for this somewhat different reason:

4α = ωω̄ : ω = 2αU0,1,2,3,4,5

so the hexagonal structure illustrated in Figure 32 is dilated, but left otherwise
intact. The number-theoretic origins of spectral degeneracy come for the first
time into clear view when one looks to the effect of p �→ ppower. To illustrate
those, I look to the (in every respect typical) leading case p = 7:

71 = ππ̄ : π ≡ (2 + j)

72 = ωω̄ : ω =
{
ππ = (1 + j4) or conjugate � (13 + j3)
ππ̄ = 7 (self-conjugate)

73 = ωω̄ : ω =
{
πππ = (−10 + j9) or conjugate � (37 + j)
πππ̄ = 7π = (14 + j7) or conjugate � (35 + j7)

74 = ωω̄ : ω =



ππππ = (−47 + j8) or conjugate � (47 + j8)
ππππ̄ = 7ππ = (7 + j28) or conjugate � (91 + j21)
πππ̄π̄ = 72 = 49 (self-conjugate)

...

where the meaning of � is explained below.39 Looking to the list (Table 4) of

39 Multiplication by ascending powers of U sends 2ω on a hexagonal tour, of
which the following is typical:

2ω = 2ππ = 2(1 + j4) → (−11 + j5) → (−13 − j3) → their negatives

I set all signs positive (so as to be in the first quadrant), pick the entry with
the largest real component (so as to land in the wedge), and signal what I have
done by writing

(1 + j4) � (13 + j3)

I appropriate 2 =
√

4 from the invariable 4-factor to insure that the tour visits
only algebraic integers.
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Surviving Cases

196 = 4 · 72

364 = 4 · 7 · 13
532 = 4 · 7 · 19
588 = 4 · 3 · 72

676 = 4 · 132

784 = 42 · 72

868 = 4 · 7 · 31
988 = 4 · 13 · 19

Table 4: Here, extracted from Table 3, are the only cases in which
two or more p-primes (the same or different) enter into the prime
factorization of N(n̂nn).

of cases yet unaccounted for, we have

196 = 4 · 72 = (13 + j3)(13 − j3) = (14 + j0)(14 − j0)

and see that 196 is “accidentally not accidentally degenerate” only because one
of the associated lattice points happens to lie on the edge of the wedge. An
identical remark pertains to each of the cases 588, 676 and 784.

We are first presented with a pair of distinct p -primes in the case

364 = 4 · 7 · 13 = 4 · (2 + j)(2 − j) · (1 + j2)(1 − j2)

which acquires its 2-fold accidental degeneracy from the circumstance that Ω
can be defined in two distinct ways:

364 = ΩΩ̄ with Ω =
{

2(2 + j)(1 + j2) or conjugate � (19 + j )
2(2 + j)(1 − j2) or conjugate � (17 + j5)

Thus do we comprehend a fact about the number 364—it is the smallest integer
that can be expressed

integer = (integer)2 + 3 · (integer)2

in six different ways—that engaged our attention already on p. 55. Similarly

532 = ΩΩ̄ with Ω =
{

2(2 + j)(4 + j ) or conjugate � (23 + j )
2(2 + j)(4 − j ) or conjugate � (12 + j4)

868 = ΩΩ̄ with Ω =
{

2(2 + j)(2 + j3) or conjugate � (29 + j3)
2(2 + j)(2 − j3) or conjugate � (26 + j8)

988 = ΩΩ̄ with Ω =
{

2(1 + j2)(4 + j) or conjugate � (29 + j7)
2(1 + j2)(4 − j) or conjugate � (31 + j3)
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The final example
988 = 292 + 3 · 72 = 322 + 3 · 32

previously escaped our notice only because the lattice point
(

31
3

)
lies beyond

the compass of Table 1.

It is by now clear that to determine the degeneracy g(n̂nn) of an eigenvalue
E(n̂nn) of the equilateral triangular box problem, we have in principle “only” to
display N = n̂2

1 + 3n̂2
2 in the factored form (64)

N = 4α3βpµ1
1 pµ2

2 · · · pµk

k Q2

Q need not itself be factored

Then to write

p1 = π1π̄1 with π1 = m1 + jn1

p2 = π2π̄2 with π2 = m2 + jn2
...

p1 = πkπ̄k with πk = mk + jnk

Then to figure out (this being a fairly straightforward combinatorial problem
which I am not motivated to pursue in detail) in how many ways one can write

N = 4α−13β ΩΩ̄ ·Q2

Ω = 2
(
π1
π̄1

)
· · ·

(
π1
π̄1

)
︸ ︷︷ ︸

(
π2
π̄2

)
· · ·

(
π2
π̄2

)
︸ ︷︷ ︸ · · ·

(
πk

π̄k

)
· · ·

(
πk

π̄k

)
︸ ︷︷ ︸

µ1 factors µ2 factors µk factors

without landing on the edge of the wedge (which happens when Ω is real); within
each bracket one is to select either the upper member or the lower. When N is
large the initial factorization may, of course, be unfeasible. And the algorithm,
since contingent upon that factorization, fails to display g(n̂1, n̂2) as an explicit
function.

It is because I am a physicist writing for physicists that I have allowed
myself to drone on for ten pages about a little problem a number theorist
would probably prefer to treat by other means,40 or perhaps to assign as an
exercise.41 The mathematical literature does supply some pretty formulæ; we
can, for example, write42

degeneracy of N =
∑

divisors d of M

(−3|d)

whereM ≡ N/4α and (−3|d) is known to Mathematica as JacobiSymbol[-3,d]
By numerical experimentation I have satisfied myself that the preceding formula
does indeed work, but that it contributes no actual power that it not already
ours.

40 See §16.9 in Hardy & Wright (Footnote 36).
41 See the reference on p. 122 of E. D. Bolker’s Elementary Number Theory:

An Algebraic Approach () to his “Problem 41.39”!
42 See P. Bachmann’s Niedere Zahlentheorie. I am indebted to Joe Roberts

for this reference.
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Concerning the second of the spectral topics to which I alluded on p. 55
we can be relatively brief. The equation43

x2 + 3y2 = N

describes an ellipse on the (x, y)-plane. Drawing inspiration from (61) and
Figure 28, we ask “How many lattice points can, in plausible approximation,
be expected to lie within the shaded elliptical sector shown in the following
figure?” Introducing polar coordinates in the usual way, we have

Figure 33: How many equi-parity lattice points are interior to the
shaded sector?

sector area =
∫ θmax

0

1
2r

2 dθ

= N
2

∫ arctan 1
3

0

1
cos2 θ + 3 sin2 θ

dθ

= π
12

√
3
N according to Mathematica

Since each lattice point preempts unit area, and only half the lattice points are
equi-parity points, we expect in leading approximation to have

number of statepoints n̂nn ≈ π
24

√
3
N = 0.075575N

This formula systematically over-estimates the number of statepoints (at
N = 900 it yields the number 68, but according to Table 1 there are in fact
only 57 points n̂nn with n̂2

1 + 3n̂2
2 ≤ 900), but fails to make any provision for the

fact that points on the edge of the wedge are excluded. Easily

lower edge length =
√
N

sloping edge length =
√

5
6N

43 For purposes of the present discussion I find it convenient to adopt this
simplified notation: n̂1 �→ x, n̂2 �→ y.
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In refined approximation we expect therefore to have

number of statepoints n̂nn ≈ π
24

√
3
N − 1

4

[
1 +

√
5
6

]√
N (67)

= 0.075575N − 0.478218
√
N

—the accuracy of which is suggested by the following table:

N Estimated Observed

100 3 4
200 8 10
300 14 16
400 21 23
500 27 29
600 34 36
700 40 43
800 47 50
900 54 57
1000 60 64

Table 5: Numerical evidence bearing on the accuracy of the (67).
The

√
N term appears to over-compensate a bit.

We conclude—drawing now upon (61); i.e., upon N = 18ma2

h2 E = ( 3ap
h )2—that

number of energy eigenvalues ≤ E ≡ 1
2mp2

≈ π
24

√
3
( 3ap

h )2 − 1
4

[
1 +

√
5
6

]
( 3ap

h )

But (recalling points remarked already on pp. 38 & 51)

box area = 1
4

√
3a2

box perimeter = 3a
states/eigenvalue (absent any accidental degeneracy) = 2

so (after a little algebraic simplification) we have

N(E) ≡ number of states with energy eigenvalues ≤ E

≈ (box area)·πp2

h2 − 1
2

[
1 +

√
5
6

]
︸ ︷︷ ︸ (box perimeter)·p

h (69.1)

| = 0.956435 ∼ 1
↓
= (box area)·πp2

h2 asymptotically (69.2)
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where “asymptotically” wears any of the meanings (large box, large momentum,
small �) one might associate with divergence of the dimensionless number ap/�.
Morse & Feshbach, at p. 761 of their Volume I, play a similar game, as it relates
to a rectangular box of arbitrary proportion; they obtain a similar result, and
state that the method “presumably holds for boundaries of any shape.” The
topic has been explored in elaborate detail by R. Balian & C. Block in a series of
papers44 which acquire special interest in relation to the general drift of my own
remarks because (particularly in their second paper) the authors draw heavily
upon the Feynmanesque ideas.

The classical phase space available to a particle that moves about in the
interior of a box (area A) with energy not greater than E has a 4-volume given
(since spatial cross sections are box-shaped, while momental cross sections are
circles of radius p =

√
2mE) by

V(E) = A · πp2

A folk theorem—as old as quantum mechanics itself, but (so far as I am aware)
nameless, and not susceptible to general proof—asserts that the number of
quantum states available to such a particle is given in leading approximation
by

N(E) =
V(E)

hdegrees of freedom
=

A · πp2

h2

It is interesting—if perhaps not terribly surprising—that this result agrees
precisely with (69.2).

By differentiation of N(E) we obtain the so-called spectral density or

density of states ρ(E) ≡ dN(E)
dE

= (box area)·2πm
h2 − 0.956435 box perimeter

h·speed

(here “speed” ≡
√

2E/m) which is frequently of more immediate physical
interest than N(E) itself; we recall, for example, that in statistical mechanics

44 “Distribution of eigenfrequencies for the wave equation in a finite domain,”
Annals of Physics, 60, 401 (1970) and 69, 76 (1972). These papers are made
valuable not least by their extensive bibliographies; Balian & Block point
out that the shape-independence of the leading term—presumed by Morse &
Feshbach—was in fact proved in  by H. Weyl. And M. Kac, in §4 of the
paper cited in my first footnote, tells the story of how Weyl acquired interest
in the problem (which Hilbert thought would not be solved in his lifetime). It
seems that one Wolfskehl had endowed a prize to be awarded to the person who
first proved Fermat’s last theorem, and that proceeds were in the meantime to
be used to bring eminent speakers to Göttingen. It was in a series of lectures
presented under those auspices in  by H. A. Lorentz, and attended by the
young Weyl, that the problem, derived from a question initially posed by James
Jeans, was mentioned.
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the partition function can be described

Z(T ) ≡
∑

states

e−
1

kT E(state)

=
∫ ∞

0

e−
E

kT ρ(E) dE = Laplace transform of the spectral density

I mention these familiar facts because they connect up in at least two ways to
points central to this essay. We note, in the first place, that

ρ(E) = locally averaged “slope of a staircase”

=
〈

rise = normal/accidental degeneracy g(E)
run = interval ∆E between consecutive eigenvalues

〉
but that to pursue the details of this remark—to undertake to disentangle the
respective contributions of numerator and denominator—is to be at risk of
learning more of number theory than of physics; I therefore won’t.45 More
interesting to me is the second point of contact:

To make a preliminary point in the simplest possible terms, assume the
Hamiltonian H of a quantum system to be time-independent. Then

|ψ)t = U(t)|ψ)0 with U(t) = exp
{
− i

�
Ht

}
In the x-representation we recover precisely (4)

(x|ψ)t =
∫

(x|U(t)|y)dy(y|ψ)0

which shows the propagator to have the character of a matrix representation of

45 For a sense of the opportunities here passed by, see Chapter 15 of the
text by G. E. Andrews, cited already in Footnote 37. To illustrate the methods
characteristic of the “geometry of numbers” Andrews reviews Gauss’ proof that

lim
N→∞

1
N

N∑
n=0

{
number of solutions of n = p2 + q2

}
= π

and Dirichlet’s proof that

lim
N→∞

N∑
n=0

{
number of divisors of n

}
= N

{
logN + some constant

}

Variants of both formulæ have acquired direct physical relevance in preceding
paragraphs.
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the operator U(t):

K(x, t; y, 0) = (x|U(t)|y) ≡ element Uxy(t) of U(t)

=
∑ ∑

(x|m)(m|U(t)|n)(n|y)

↓

=
∑
n

e−
i
�
Ent(x|n)(n|y) when H |n) = En|n)

It becomes natural in this light to speak of the (representation-independent)
trace of U(t):

trU(t) =
∫ {∑

n

e−
i
�
Ent(x|ψ)(ψ|x)

}
dx

=
∑
n

e−
i
�
Ent by

∫
(ψ|x)(x|ψ) dx = 1

Relaxing now our tacit presumption that the spectrum is non-degenerate, and
taking certain notational liberties (of the form

∑
→

∫
), we obtain

trace of the propagator ≡
∫

K(x, t;x, 0) dx

=
∫

e−
i
�
Etρ(E) dE

= partition function Z(T )︸ ︷︷ ︸ with 1
kT → i

�
t (70)

Laplace transform of spectral density

We stand thus in prospect of a “trace theorem” which serves to establish a
direct connection between the spectral density on the one hand and (on the
other) a collective property of the classical “orbits” (paths that end where they
began).

There is, of course, nothing novel about (70); it is as old as the hills.46

But those hills yielded gold when prospected by (amongst many others) Balian
& Bloch, Michael Berry and—most notably—Martin Gutzwiller in the ’s.
The resulting theory—which has been nicely reviewed in a recent monograph by
M. Brack & R. Bhaduri47 and is notable for its intricacy—has in more recent
times become central to one approach to study of the problem of quantum
chaos.48

46 See, for example, the introductory sections of Chapter 10 in Feynman &
Hibbs, who remark that they find (70) “amusing.”

47 Semiclassical Physics (); the “Gurtzwiller trace formula” and some of
its extensions are treated in Chapters 5 & 6.

48 See the popular review by Gurtzwiller in the January  issue of Scientific
American.
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10. Particle in a bisected equilateral box. The problem now before us stands
to the 60-60-60 problem (§§7–9) rather like the 45-45-90 problem (§6) stands
to the square-box problem; in each case, it is by “bisection” that the latter
problem goes over into the former. “Bisection” amounts to the installation of
an adjusted boundary condition, and in each case that is accomplished by (in
effect) discarding solutions that do not possess suitably placed nodal lines—
solutions which do not possess, that is to say, an appropriate antisymmetry
property. This much is intuitively pretty clear; my objective will be to trace
the details by which results consistent with that intuition emerge spontaneously
from application of the analytical machinery now at our command. Since most
of the work (and all of the digressions) lie now behind us, we can be relatively
brief, though the 30-60-90 problem is in some respects the most complex we
will have occasion to consider. I will be at pains to proceed as though following
steps spelled out in our “cookbook,” as it has emerged. Our dimensioned box

Figure 34: The 30-60-90 box, got by “bisecting” the equilateral box
treated earlier.

a

1
2

√
3a

is shown in the preceding figure; it has

box area = 1
8

√
3a2

box perimeter = 1
2

[
3 +

√
3

]
a

step one: coordinatize the tesselated plane. This, in the first instance,
entails identification of a “fundamental unit,” which can be accomplished in
(infinitely) many ways, of which some are more natural than others. All options
lead to the same ultimate result, but each lends its distinctive coloration to
the intervening computation. Two options natural to the 30-60-90 problem
(variants of those encountered already in connection with the 60-60-60 problem:
see again Figures 21 & 22) are shown in Figures 35 & 36. We adopt the former
(see Figure 37) in order to minimize the amount of fresh computation we have
to perform, and to expose most clearly the relationship between physics in an
equilateral box and physics in its bisection; for an account of the argument as
it proceeds from the 24-element option see the material cited in Footnote 2.
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Figure 35: The 12-element fundamental unit upon which the
analytical work developed in the text is based; we select this option
in order to achieve maximal consonance with the work which in
previous sections proceeded from Figure 21.

Figure 36: An alternative 24-element fundamental unit that
reproduces the tesselated plane by orthogonal translation. Note the
rectangularity of the unit, which in Figure 22 we were not able
to achieve. The inessential analytical simplification purchased by
orthogonality is more than paid for by the concomitant obligation to
keep track of an increased number of fundamental image points.

Proceeding now in reference to Figure 37, we note that xxx0, xxx1, xxx2, xxx3, xxx4 and xxx5

are defined precisely as they were in the equilateral case (Figure 23)—though
xxx0 ranges now on a relatively restricted domain—and that

xxxk+6 = −xxxk : k = 0, 1, 2, 3, 4, 5
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x

x

x

x

x
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x

x

x

x

x
x

T

T

Figure 37: Notated enlargement of Figure 35, which expands upon
notations introduced in Figure 23.

Again things have been rigged so as to achieve (in all cases)

parity of xxxα = (−)α

Borrowing from previous work (p. 39) we have without labor the fundamental
image coordinates reported at the top of the next page. The translation vectors
are given also as before; we have

TTT 1 = a
2

(
3

+
√

3

)
and TTT 2 = a

2

(
3

−
√

3

)
so the matrix T defined at (27)—of which we will soon have need—can be
described

T = 3
2a

2

(
2 1
1 2

)
, det T = 3 ·

(
3
2a

2
)2 and T –1 =

(
3
2a

2
)−1

(
2
3 − 1

3

− 1
3

2
3

)
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xxx0 =
(

+1 0
0 +1

)
xxx = −xxx6 with xxx ≡

(
x1

x2

)

xxx1 = 1
2

(
−1 −

√
3

−
√

3 +1

)
xxx0 = −xxx7

xxx2 = 1
2

(
−1 −

√
3

+
√

3 −1

)
xxx0 = −xxx8

xxx3 =
(

+1 0
0 −1

)
xxx0 = −xxx9

xxx4 = 1
2

(
−1 +

√
3

−
√

3 −1

)
xxx0 = −xxx10

xxx5 = 1
2

(
−1 +

√
3

+
√

3 +1

)
xxx0 = −xxx11

step two: express the sum-over-paths as a sum of theta functions.
It is a lesson of experience—not informed by any compelling general argument—
that because our particle moves “freely” (meaning subject only to impulsive wall
forces) the hypothetical “test paths” contemplated by Hamilton make no net
contribution to Feynman’s sum-over-paths; that in the class of problems here
under review (see again p. 9) we have, in simplified consequence of the Feynman
formalism, the statements

K(xxx, t;yyy, 0) =
∑

all paths

(
m
iht

)dimension
2 e

i
�
S[classical reflective path]

= m
iht

11∑
α=0

(−)α
∑
nnn

exp
{

i
�
Sα

}
i
�
Sα = β(vvvα+ nnn) ·T (vvvα+ nnn)

where (as before) β ≡ im/2�t and where the vectors vvvα were defined at (27);
here as before it serves the interests of clarity to postpone for a moment their
actual evaluation. Reading again from (37.1), we have

= m
iht

11∑
α=0

(−)αeβvvvα·Tvvvα ϑ
(
iβTvvvα,− iβ

π T
)

step three: pass, by jacobi’s identity, to the wave representation.
Reading from (37.2) we have (compare (45))

= 1
area of fundamental unit

11∑
α=0

(−)α ϑ
(
πvvvα,

π
iβT –1

)
(71)

We note in passing that “area of the fundamental unit” has the same value as
in the equilateral case, but stands in a different relation to the area of the box:

area of fundamental unit = 12 · area of box = 3
2

√
3a2
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step four: expand the theta function. Drawing upon (46) we obtain

K(xxx, t;yyy, 0) = 1
12·area

∑
nnn

e−
i
�
E(n2

1−n1n2+n2
2) t

11∑
α=0

(−)α cos 2πnnn·vvvα (72)

by the manipulations that gave (47), and in which E retains its former meaning:

E ≡ 2
9

h2

ma2

Our objective in the next two steps is first to lump together all terms with
numerically identical “energy exponentials,” and then to “resolve the lumps”
so as to achieve

(x-dependent factor) · (y-dependent factor)

There are several ways to proceed, depending upon how heavily we are willing
to draw upon results obtained already in connection with the equilateral box
problem. I have elected to proceed afresh, by slight re-organization of our
former line of argument:

step five: sum over spectral symmetries. Which, if we were working
on a truly clean blackboard, we would have first to identify; I will be content
simply to summarize what we already know in this regard. We know (see again
the beginning of §8) that it is entirely natural to write

n2
1 − nnn2 + n2

2 = 1
4

[
(n1 + n2)2 + 3(n1 − n2)2

]
= 1

4 n̂nn
T

(
1 0
0 3

)
n̂nn with n̂nn ≡

(
1 1
1 −1

)
nnn

= 1
4

[
n̂2

1 + 3n̂2
2

]︸ ︷︷ ︸ = 1
4 (n̂1 + i

√
3n̂2)(n̂1 − i

√
3n̂2)

≡ N(n̂nn)

And we know that N(n̂nn) is invariant under the operations described by (59);
each (equi-parity) lattice point n̂nn therefore has (see again the “orbits” shown
in Figures 26 & 28) five or eleven “companions,” according as it lives on the
upper/lower “edge of the wedge” or in its interior. It becomes in this light
natural to reorganize the right side of (72), writing

K(xxx, t;yyy, 0) = 1
12·area

∑
wedge

e−
i
�
E 1

4N(n̂nn) t
{ ∑

orbit

11∑
α=0

(−)α cosπZn̂nn·vvvα
}

(73)

Here Z is the matrix defined on p. 44; it permits one to write n̂nn = Znnn and, by
inversion, nnn = 1

2Z n̂nn. Turning our attention now to the expression interior to
the braces: the vectors v̂vvα were defined at (27)

vvvα ≡ T –1

(
SSSα·TTT 1

SSSα·TTT 2

)
with SSSα ≡ xxxα − yyy



The 30-60-90 triangular box problem 75

and by extension (use xxxk+6 = −xxxk : k = 0, 1, 2, 3, 4, 5) of calculations reported
on p. 41 we have

−πvvv0 =
(
X2−Y2

X1−Y1

)
− πvvv6 =

(
−X2−Y2

−X1−Y1

)

−πvvv1 =
(
X0−Y2

X1−Y1

)
− πvvv7 =

(
−X0−Y2

−X1−Y1

)

−πvvv2 =
(
X1−Y2

X0−Y1

)
− πvvv8 =

(
−X1−Y2

−X0−Y1

)

−πvvv3 =
(
X1−Y2

X2−Y1

)
− πvvv9 =

(
−X1−Y2

−X2−Y1

)

−πvvv4 =
(
X0−Y2

X2−Y1

)
− πvvv10 =

(
−X0−Y2

−X2−Y1

)

−πvvv5 =
(
X2−Y2

X0−Y1

)
− πvvv11 =

(
−X2−Y2

−X0−Y1

)
Recalling again the definition (and noting the symmetry) of Z, we have

−πZn̂nn·vvvα =
(
n̂1

n̂2

)T (
1 1
1 −1

)
(−πvvvα)

giving

−πZn̂nn·vvv0 = n̂1[+X1 +X2 − Y1 − Y2] + n̂2[−X1 +X2 + Y1 − Y2]

−πZn̂nn·vvv1 = n̂1[+X1 +X0 − Y1 − Y2] + n̂2[−X1 +X0 + Y1 − Y2]

−πZn̂nn·vvv2 = n̂1[+X0 +X1 − Y1 − Y2] + n̂2[−X0 +X1 + Y1 − Y2]

−πZn̂nn·vvv3 = n̂1[+X2 +X1 − Y1 − Y2] + n̂2[−X2 +X1 + Y1 − Y2]

−πZn̂nn·vvv4 = n̂1[+X2 +X0 − Y1 − Y2] + n̂2[−X2 +X0 + Y1 − Y2]

−πZn̂nn·vvv5 = n̂1[+X0 +X2 − Y1 − Y2] + n̂2[−X0 +X2 + Y1 − Y2]

−πZn̂nn·vvv6 = n̂1[−X1 −X2 − Y1 − Y2] + n̂2[+X1 −X2 + Y1 − Y2]

−πZn̂nn·vvv7 = n̂1[−X1 −X0 − Y1 − Y2] + n̂2[+X1 −X0 + Y1 − Y2]

−πZn̂nn·vvv8 = n̂1[−X0 −X1 − Y1 − Y2] + n̂2[+X0 −X1 + Y1 − Y2]

−πZn̂nn·vvv9 = n̂1[−X2 −X1 − Y1 − Y2] + n̂2[+X2 −X1 + Y1 − Y2]

−πZn̂nn·vvv10 = n̂1[−X2 −X0 − Y1 − Y2] + n̂2[+X2 −X0 + Y1 − Y2]

−πZn̂nn·vvv11 = n̂1[−X0 −X2 − Y1 − Y2] + n̂2[+X0 −X2 + Y1 − Y2]

which in notations

X0 = 2ξ1 Y0 = 2ζ1

X1 = −ξ1 + ξ2 Y1 = −ζ1 + ζ2

X2 = −ξ1 − ξ2 Y2 = −ζ1 − ζ2

first introduced on p. 42 read
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−πZn̂nn·vvv0 = n̂1[−2ξ1 + 2ζ1] + n̂2[−2ξ2 + 2ζ2]
= [ −2n̂1ξ1 − 2n̂2ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv1 = n̂1[+ ξ1 + ξ2 + 2ζ1] + n̂2[+3ξ1 − ξ2 + 2ζ2]
= [+(n̂1 + 3n̂2)ξ1 + (n̂1 − n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv2 = n̂1[+ ξ1 + ξ2 + 2ζ1] + n̂2[−3ξ1 + ξ2 + 2ζ2]
= [+(n̂1 − 3n̂2)ξ1 + (n̂1 + n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv3 = n̂1[−2ξ1 + 2ζ1] + n̂2[+2ξ2 + 2ζ2]
= [ −2n̂1ξ1 + 2n̂2ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv4 = n̂1[+ ξ1 − ξ2 + 2ζ1] + n̂2[+3ξ1 + ξ2 + 2ζ2]
= [+(n̂1 + 3n̂2)ξ1 − (n̂1 − n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv5 = n̂1[+ ξ1 − ξ2 + 2ζ1] + n̂2[−3ξ1 − ξ2 + 2ζ2]
= [+(n̂1 − 3n̂2)ξ1 − (n̂1 + n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv6 = n̂1[+2ξ1 + 2ζ1] + n̂2[+2ξ2 + 2ζ2]
= [ +2n̂1ξ1 + 2n̂2ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv7 = n̂1[− ξ1 − ξ2 + 2ζ1] + n̂2[−3ξ1 + ξ2 + ζ2]
= [−(n̂1 + 3n̂2)ξ1 − (n̂1 − n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv8 = n̂1[− ξ1 − ξ2 + 2ζ1] + n̂2[+3ξ1 − ξ2 + 2ζ2]
= [−(n̂1 − 3n̂2)ξ1 − (n̂1 + n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv9 = n̂1[+2ξ1 + 2ζ1] + n̂2[−2ξ2 + 2ζ2]
= [ +2n̂1ξ1 − 2n̂2ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv10 = n̂1[− ξ1 + ξ2 + 2ζ1] + n̂2[−3ξ1 − ξ2 + 2ζ2]
= [−(n̂1 + 3n̂2)ξ1 + (n̂1 − n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

−πZn̂nn·vvv11 = n̂1[− ξ1 + ξ2 + 2ζ1] + n̂2[+3ξ1 + ξ2 + 2ζ2]
= [−(n̂1 − 3n̂2)ξ1 + (n̂1 + n̂2)ξ2] + 2[n̂1ζ1 + n̂2ζ2]

Writing
11∑

α=0

(−)α cosπZn̂nn·vvvα =
{ 5∑

α=0

+
11∑

α=6

}
(−)α cosπZn̂nn·vvvα

we look specifically to the first sum on the right (which will put us in position to
obtain the second by a simple sign adjustment); grouping terms by the scheme
α = {0, 3}, {1, 4}, {2, 5} and making use of the elementary identity

cos(A+B + C) − cos(A−B + C)

= −2 sinA · sinB · cosC − 2 cosA · sinB · sinC
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we obtain

5∑
α=0

(−)α cosπZn̂nn·vvvα

= −2
{

+ sin[−2n̂1ξ1] sin[−2n̂2ξ2]

− sin[(n̂1 + 3n̂2)ξ1] sin[(n̂1 − n̂2)ξ2]

+ sin[(n̂1 − 3n̂2)ξ1] sin[(n̂1 + n̂2)ξ2]
}

cos[2(n̂1ζ1 + n̂2ζ2)]

− 2
{

+ cos[−2n̂1ξ1] sin[−2n̂2ξ2]

− cos[(n̂1 + 3n̂2)ξ1] sin[(n̂1 − n̂2)ξ2]

+ cos[(n̂1 − 3n̂2)ξ1] sin[(n̂1 + n̂2)ξ2]
}

sin[2(n̂1ζ1 + n̂2ζ2)]

which in notation introduced on p. 46 reads

5∑
α=0

(−)α cosπZn̂nn·vvvα = −2
{
F̂n̂nn(ξ1, ξ2) cosϕ− Ĝn̂nn(ξ1, ξ2) sinϕ

}
(74.1)

with ϕ ≡ 2(n̂1ζ1 + n̂2ζ2). Here we have (by slightly different means) reproduced
a result encountered already in connection with our analysis of the 60-60-60
box problem; it is the result which led to our first perception of the symmetry
structure of n̂2

1 +3n̂2
2—information which in the present discussion we accepted

as known in advance—and from which we extracted our description of the
equilateral box eigenfunctions. But in the present connection we need also the
conjoint statement (got without labor by ξξξ → −ξξξ, in which connection recall
symmetry conditions (63))

11∑
α=6

(−)α cosπZn̂nn·vvvα = −2
{
F̂n̂nn(ξ1, ξ2) cosϕ+ Ĝn̂nn(ξ1, ξ2) sinϕ

}
(74.2)

By addition
11∑

α=0

(−)α cosπZn̂nn·vvvα = −4F̂n̂nn(ξ1, ξ2) cosϕ (75)

from which the Ĝ-term has dropped away; it is this cancellation—the effect
of which is to eliminate the eigenstates which were invariant with respect to
reflection in the ξ2-axis (i.e., which were even functions of ξ1)—which principally
distinguishes the 30-60-90 box problem from its equilateral companion.

We have thus far summed over the elements of the fundamental unit (and
used spectral symmetry information to accomplish that process), but have yet
to carry out the ∑

orbit

= sum over spectral symmetries
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To that end we write

cosϕ = cos 2n̂1ζ1 cos 2n̂2ζ2 − sin 2n̂1ζ1 sin 2n̂2ζ2

and observe (as we did already at the top of p. 43) that—owing to parity-based
cancellations— the first term on the right makes no net contribution to the
orbital sum. Arguing now as we did on p. 51, we obtain finally

{ ∑
orbit

11∑
α=0

(−)α cosπZn̂nn·vvvα
}

= 16F̂n̂nn(ξξξ)F̂n̂nn(ζζζ) (76)

where the equi-parity point n̂nn lies necessarily in the interior of the wedge.

step six: read off eigenvalues and eigenvectors. Returning with (76)
to (73), we have

K(xxx, t;yyy, 0) = 4
3·area

∑
wedge

′′
e−

i
�
E 1

4N(n̂nn) t F̂n̂nn(ξξξ)F̂n̂nn(ζζζ)

area = 1
2 area of equilateral box

We have at this point reached our ultimate objective, for we have only to write

E(n̂nn) ≡ h2

18ma2

(
n̂2

1 + 3n̂2
2

)
and Ψn̂nn(xxx) ≡

√
32

3
√

3a2 e
i(any phase)F̂n̂nn(ξξξ) (77)

to obtain (compare (62))

K(xxx, t;yyy, 0) =
∑

wedge

′′
e−

i
�
E(n̂nn) tΨn̂nn(xxx)Ψ∗

n̂nn(yyy) (78)

—which is an instance of (3).

11. Comparative discussion of spectrum & eigenfunctions. The 30-60-90 box,
got by bisection of the equilateral box, has (see again Figure 34)

area = 1
2 · area of associated equilateral box

= 1
2 · 1

4

√
3a2

perimeter = 1
2 · perimeter of associated equilateral box + 1

2

√
3 side-length

= 1
2

[
1 + 1√

3

]
︸ ︷︷ ︸ · perimeter of associated equilateral box

= 1.577350

It gives rise to an energy spectrum which is identical to that of the equilateral
box , and which has the same accidental degeneracy structure (see Table 1). This
is somewhat counter-intuitive; we expect the small cymbal to sound higher, but
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find in this instance that it supports a fundamental as low as equilateral cymbal
from which it was cut. The essential difference (from a spectral point of view)
between the two systems resides in the fact that each spectral value is (in the
absence of accidental degeneracy) doubly degenerate in the equilateral case, but
singly degenerate in the bisected case; we have

30-60-90 density of states = 1
2 · equilateral density of states

with the result that it is not the structure of the spectrum itself but the location
of the N th state (N = 2, 3, . . .) that has been shifted upward by the reduction
in box area.

The general drift of the preceding remark is neatly supported by equation
(69), which is reproduced below:

N(E) ≡ number of states with energy eigenvalues ≤ E

≈ (box area)·πp2

h2 − 1
2

[
1 +

√
5
6

]
︸ ︷︷ ︸ (box perimeter)·p

h

= 0.956435 ∼ 1

Evidently

box area → box area
2 serves asymptotically to induce N(E) → 1

2N(E)

but
box perimeter → 1.577350 box perimeter

2

causes the leading-order correction term—which (see again Table 5) already
over-compensated—to become now even more too large. I hope on another
occasion to trace this circumstance to a sense in which the 30-60-90 box is
“less nearly round” than the equilateral box.

The 30-60-90 box problem gives rise to a set of eigenfunctions which can be
obtained from those of the associated equilateral box problem by a procedure
of the design

{60-60-60 eigenfunctions} −−−−−−−−−−−−→
elimination

renormalization

{30-60-90 eigenfunctions}

The functions that survive the “elimination” process are those that are
antisymmetric in the variable ξ1 ≡ π

3ax1; in Figure 30, the symmetric function
depicted at the top is discarded, while its antisymmetric companion (ground
state of the 30-60-90 box) is retained. Renormalization (multiplication by

√
2)

is necessary because the bisected box has only half of its former area.

The procedure just described—“opportunistic” in the sense that it involves
creation of a new physical system by erection of a barrier on the site of a nodal
line of a prior system—is hardly novel; it is used occasionally/casually in a
variety of applications (particularly to electrostatics and potential theory), and
can be considered basic to the practical application of the “method of images.”
But some questions relating to the theoretical limits of its utility remain
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(so far as I am aware) open. The following remarks are intended to identify
a few of the points at issue—points which spring perhaps more naturally from
the quantum mechanical than from other more standard manifestations of the
method of images.

Comparison of Figure 18 with Figure 30 suggests that we should be able to
extract the physics of the 45-45-90 box from that of the square box by precisely
the procedure just discussed, and raises this question: Why can’t quantum
mechanics in a right triangular box of arbitrary proportion be extracted from
that of the associated rectangular box? The answer, though elementary, is
instructive. Rectangular boxes give rise—whether analysed by separation of
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0

0.2

0.4

0.6

0.8

Figure 38: We found at (22), and again (by another method) on
p. 26, that the eigenstates of a particle in a rectangular box can be
described

ψn1n2(x1, x2) =
√

4
box area sin

(n1π

a1
x1

)
· sin

(n2π

a2
x2

)

In the figure I have set a1 = 1, a2 = 4
5 , n1 = 5 and n2 = 9. Note

that the nodal lines run parallel to the sides of the box.

variables or by the method of images—to eigenfunctions the nodal lines of which
(see the figure) run parallel to the sides of the box; none runs on a diagonal.
This remains true when the box becomes square, but then—abruptly—the
eigenstates, because of the enhanced symmetry of the square, become doubly
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degenerate,49 and yield diagonal nodal lines when taken in appropriate linear
combination. The situation is illustrated in Figure 39, and amounts, in short,
to this: “it takes two to linearly combine,” and one does not (in the absence of
accidental degeneracy) have two to play with unless the box is square. It is
interesting that a situation which from one point of view derives from the
delicate circumstances which permit “tesselation of the plane” can, from another
point of view, be said to be rooted in a fortuitous spectral degeneracy.

Figure 39: The figure on the left shows the square box state ψ23,
at center is the state ψ32, and on the right is their difference, with
its diagonal nodal line. The difference state appears in Figure 18
as an eigenstate of the 45-45-90 box problem.

Figure 40: Iterative origin of the self-similarity properties which
(presumably) attach to the spectrum and eigenfunctions that arise
from the 45-45-90 and 30-60-90 box problems.

49 It is amusing to note in this connection that squares are the “roundest” of
all rectangles.
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Figure 41: Self-similarity in the one-dimensional box problem;
bisection of the box produces eigenstates from which one can, by
elementary transformations, recover the parent population. In the
figure the amplitudes have been selected arbitrarily. See the text for
explanatory remarks.
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The process of opportunistically erecting barriers at nodal lines can, under
favorable circumstances, be iterated, as illustrated in Figure 40. The implication
—which I will not pursue, but which will already have impressed itself upon
any reader who has taken the trouble to do the hands-on exploration advocated
on p. 33—is that the eigenfunctions (and also the eigenvalues) encountered
in connection with the 45-45-90 and 30-60-90 box problems possess a pretty
scaling property . A simple precursor of this phenomenon arises from the
one-dimensional box problem, and is illustrated in Figure 41; on the left are
shown the eigenfunctions of ascending order, on the right are the eigenfunctions
of the system which results when a barrier has bisected the box. It is clear both
diagramatically and analytically that the latter functions collectively reproduce
the parent functions, which could be recovered by elementary deformations.
The interesting point is that “reverse iteration” works in this case because all
one-dimensional boxes have the same shape.50 But the boxes produced by
diagonal bisection of a square box, or central bisection of an equilateral box,
have shapes different from their respective parents. It is evidently not possible
to recover the anti-nodal eigenfunctions of the square/equilateral parent boxes
by reversal of the iterative schemes depicted in Figure 40.

Generalizing. . . let A be a box of arbitrary shape, let ψseed be selected from
the population {ψ}A of eigenfunctions on A, and let B be a selected one of the
regions defined by the nodal net of ψseed (see Figure 42). Erect a barrier on the

Figure 42: On the left are the box A and the nodal contours of
some selected eigenstate ψseed. On the right is a daughter box B
defined by that nodal net.

boundary ∂B of B and construct the population {ψ}B of eigenfunctions on the
daughter box. It becomes, in the light of what’s gone before, natural to ask:
“What is the relationship of {ψ}B to {ψ}A? More particularly, under what
conditions does ∂B occur in the nodal nets also of other elements of {ψ}A?
Under what conditions are those ∂B-sharing elements of {ψ}A complete/
orthonormal on B? Tangential evidence51 leads me to suspect that the answer
to all such questions is “Only very exceptionally!” The systems which have
been of concern to us are in this light recognized to be exceptional systems.

50 Recall my introductory paragraph.
51 I am thinking here of, for example, “Bourget’s hypotehsis” (see G. Watson’s

Theory of Bessel Functions, §15.28), according to which Jm(z) and Jn(z) (here
m and n are positive integers) have no common zeros, apart from the origin.
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12. From one in a two-box to two in a one-box. The Feynman formalism, though it
purports to be elastic enough to embrace—in principle—the whole of quantum
mechanics, permits detailed calculation only in a vaguely-defined population of
special cases, and it is to a sharply-defined sub-population that the preceding
material specifically refers. The theory in hand brings to mind the trio in
a Mozartian opera: three soloists are on stage at the same time—geometry,
analysis and number theory—singing finely-balanced harmony in the service of
physics. Each, however, is able to perform, whether singly or in concert, only
when things are “just so,” and too much of “just so” tends to be off-puttingly
claustrophobic, to diminish one’s interest in the song, to inspire doubt that it
pertains usefully to the rude real world.

My objective in what now follows will be to show that results already
in hand admit interestingly of a line of physical reinterpretation. And that
elaboration of those reinterpretations leads naturally to a modest loosening of
the constraints that at present so tightly bind us.

Let two particles—m1 and m2—inhabit the one-dimensional box of §1.
Assume them to move freely except for the impulsive forces of constraint exerted
by the walls and the contact forces which prevent their interpenetation; we then
have

0 ≤ x1 ≤ x2 ≤ a : all times t

Take the coordinate pair {x1, x2} to define a point on a plane. The configuration
space available to the system has then the triangular form shown in Figure 43.
System motion, in such a representation, traces a folded series of line segments,
and resembles “billiards on a 45-45-90 triangular table” except in this sole
respect: the “law of reflection” is not (unless m1 = m2) satisfied on the diagonal.
For the slope of a segment is given by

slope =
instantaneous velocity of m2

instantaneous velocity of m1

Clearly

slope → −slope (law of reflection) when either
{

m1 bounces elastically of left wall

m2 bounces elastically of right wall

but the elementary theory of one-dimensional elastic collisions supplies

exit slope =
2m1−(m1−m2)(entry slope)

(m1−m2)+2m2(entry slope)
(79)

and by elementary geometrical argument we know that when a ray of slope
tanα is incident upon a mirror of slope tanφ the reflected ray has slope tanβ
with β = 2φ− α; moreover

tanβ =
tan 2φ− tanα

1 + tan 2φ tanα

=
2 tanφ− (1 − tan2 φ) tanα
(1 − tan2 φ) + 2 tanφ tanα

(80)
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which bears a striking resemblance to (79), from which, however, it differs in
one small detail. My immediate objective is to remove that wart. To that end,
we notice that that the “energy ellipse” can, by a simple rescaling, be made
circular:

E = 1
2 (m1ẋ

2
1 +m2ẋ

2
2)

= 1
2M(Ẋ2

1 + Ẋ2
2 ) with



X1 ≡

√
m1
M x1

X2 ≡
√

m2
M x2

(Here a mass M , of arbitrary value, has been introduced for dimensional reasons;
it will be assigned its “natural value” in a moment.) The transformation xxx → XXX,
since linear, sends lines into lines, but adjusts their slopes:

slope =
√

m1
m2

Slope

In the latter notation (79) can be written

exit Slope =
2 tanφ− (1 − tan2 φ)(entry Slope)
(1 − tan2 φ) + 2 tanφ(entry Slope)

with

tanφ ≡
√

m2
m1

= slope of diagonal side of transformed triangle

Comparison with (80) shows that we have, by simple deformation xxx → XXX,
achieved collisional compliance with the law of reflection. The deformation has

Jacobian =
√

m1m2
M

= 1 provided we set M =
√

m1m2 = harmonic mean

which (as a matter simply of convenience) we do so the triangle and its transform
will have the same area; the transformation then reads

x1 → X1 =
(m1
m2

) 1
4 x1

x2 → X2 =
(m2
m1

) 1
4 x2


 (81)

It is “hyperbolic” in the sense that X1X2 = x1x2, and reduces to the identity
when m1 = m2. The point (see again Figure 43) of the preceding remarks is
this:

The XXX-representation of the motion of our 2-particle system
is formally indistinguishable from that of a single billiard ball
on a triangular table of specific design.

Prescribed initial data {xxx, ẋxx}0 serves, in effect, to inscribe a line inXXX-space.
From the unique “reflective covering” of such a line (see Figure 44) one can read
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Figure 43: The figure on the left describes—in natural coordinates
x1 and x2—the adventures of two particles in a one-dimensional
box: on the left m1 has bounced off the left end of the box; at top
m2 has bounced off the right end of the box; on the diagonal the
particles have collided. The “law of reflection” does not hold on the
diagonal. The figure on the right displays the same information in
the coordinates defined by (81), which have been designed to bring
collisions into conformity with the law of reflections.

Figure 44: “Reflective covering of a line,” which permits one to
read off the collisional implications of prescribed initial data, as
explained in the text. The figure is drawn in XXX-space. It was
such a figure (see Figure 2 in A. Hobson, “Ergodic properties of
a particle moving elastically inside a polygon,”J. Math. Phys. 16,
2210 (1975)) that initially inspired my interest in this entire subject.
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off the collisional experiences—past and future—of the particle pair, experiences
which (reading from the figure, which has been drawn in the presumption that
(m2/m1)

1
4 = 2) might be encoded

CLRCLCLCLCRLCL . . .

It is because m1 is here so much less massive than m2 = 16m1 that we witness
so many more L(eft) than R(ight) wall-reflections; poor m1 really gets pounded.

In three cases and three only—namely the cases m1 = m2 (when the
collisional side of the triangle in XXX-space has slope = tan 45◦), m2 = 3m1 (when
slope = tan 60◦) and m2 = 1

3m1 (when slope = tan 30◦)—do the triangles that
cover the population of all possible lines fit together so neatly as to achieve
tesselation of the plane. In those cases and those only is it feasible to speak
usefully of the population of classical trajectories that link a specified initial
configuration to a specified terminal configuration (as the Feynman formalism
requires). In those cases and those only can we use the results already in hand
to obtain an exact quantum mechanical description of the dynamics of two
particles in a one-dimensional box . . .but in those cases we can do so, which is
fairly remarkable. The results in hand are, moreover, nicely pre-adapted to the
“indistinguishability physics” which might be imposed in the case m1 = m2.

One-dimensional two-particle systems of the type considered above were
recommended to our attention on grounds of their formal equivalence to certain
two-dimensional single-particle systems. But if one has two particles to play
with it is easy to devise systems which, while formally detached from billiard
physics, are of some independent interest. Suppose, for example, that m1 and
m2 are constrained not by the walls of a “one-dimensional box” but by the
“inextensible string” (of length a) that binds them. The intuitively-evident
motion of such a “string molecule” (which, like a turtle, “carries its box on its
back”) is illustrated in Figure 45. Analytically, one writes

x1 = X + r1

x2 = X + r2

and imposes the side condition

m1r1 +m2r2 = 0

Then

E = 1
2

(
m1ẋ

2
1 +m2ẋ

2
2

)
= 1

2MẊ2 + 1
2

(
m1ṙ

2
1 +m2ṙ

2
2

)
with M ≡ m1 +m2

= 1
2M

(
Ẋ2 + Ṙ2

)
with R ≡ +

√
m2
m1

r2 = −
√

m1
m2

r1

The maximial excursion of the relative coordinate is set by the length of the
string; easily

0 ≤ R ≤ Rmax =
√
m1m2

M a
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Figure 45: Spacetime diagram of the one-dimensional motion of
the “string molecule” shown at bottom. The central dashed line
represents the unaccelerated drift of the center of mass. Many
related figures can be found in Chapter II of Baylor Fox’s Reed
College thesis (May 1996).

Figure 46: Application of the method of images to the “diatomic
string molecule problem” requires an initial deformation (81) so as
to acquire the “law of reflection,” but is thereafter straightforward.
The molecular problem is evidently equivalent to the problem of
“billiards on a table without ends.”
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It is by this point clear that, whether one proceeds directly or (see Figure 46)via
the method of images,52 one will be led to separated eigenfunctions of the form

ψ(x1, x2) = ψunaccelerated drift(X) · ψbox(R)

where the latter factor describes the “vibrational” state of the molecule.

13. The one-dimensional triatomic string molecule. Adding one particle and two
strings to the system discussed in the preceding paragraph, one obtains the
system shown in Figure 47. To avoid complications that are extraneous to the

Figure 47: Generic “triatomic string molecule.” The constituent
“atoms”—reading from left to right—have coordinates x1, x2, x3

and masses m1, m2, m3. They are bound by inextensible massless
strings of lengths s12, s23 and s13. Without loss of generality we
assume s12 ≤ s23; it becomes then fairly natural to assume that

s12 ≤ s23 ≤ s13 and s13 ≤ s12 + s23

since in all other cases one or another of the strings would have
nothing to do, and could be eliminated.

business now at hand, I will set m1 = m2 = m3 ≡ m and s12 = s23 ≡ s. The
center of mass of the 3-body system lives then at

X = 1
3 (x1 + x2 + x3)

and drifts along uniformly. We agree to concentrate on (vibrational) motion
relative to the center of mass; writing

x1 = X + r1

x2 = X + r2

x3 = X + r3

52 For the details—which hold no surprises—see pp. 233–237 of the research
notes (–) cited in Footnote 2. Also treated there is the (formally more
interesting) case in which the molecule moves on the surface of a disk.
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Figure 48: Orientation of the “internal configration plane” in
relation to a cube centered at the origin of 3-dimensional r-space.
The configuration plane is always normal to the “mass vector”
mmm ≡ (m1,m2,m3); here we have assumed all masses equal.





Figure 49: The configuration plane seen face-on. The symmetry
inherent in the equation r1 + r2 + r3 = 0 is manifest. The lines
normal to the n-axis (n = 1, 2, 3) were scribed by stacked planes of
constant rn.
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s 





s

s

Figure 50: Construction, on the internal configuration plane, of
the polygonal domain accessible to the string molecule. It has been
assumed that s12 = s23 = s and s < s13 < 2s. Within the polygon,
all r1-values are negative and all r3-values are positive, but the
coordinate r2 of the interior atom is as often positive as negative.

the relative coordinates53 are subject to the linear constraint

r1 + r2 + r3 = 0

and reside therefore on a 2-dimensional “internal configuration plane” in
3-dimensional r-space. Figure 48 shows the relation of the configuration plane
to the coordinate planes. Planes parallel to the latter intersect the internal
configuration plane in such a way as to set up the triangular grid shown in
Figure 49. Working in reference to that gird, I construct in Figure 50 the
polygonal domain accessible to the molecule. The motion of the point repre-
sentive of the instantaneous internal configuration of the molecule is shown in
Figure 51. Two-body collisions—else string-mediated “anticollisions”—occur
when the configuration point “bounces off a wall,” as spelled out below:

53 Concerning which (we note it passing) it is intuitively evident that

r1 is always negative (or zero)
r3 is always positive (or zero), but
r2 can have either sign
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At wall A: ©1 & ©2 collide, ©3 is a spectator;

At wall E: ©2 & ©3 collide, ©1 is a spectator;

At wall D: ©1 & ©2 anticollide, ©3 is a spectator;

At wall B: ©2 & ©3 anticollide, ©1 is a spectator;

At wall C: ©1 & ©3 anticollide, ©2 is a spectator;

Sides A and E intersect at a vertex VAE which refers to the classic three-
body collsion which takes place when ©1 , ©2 and ©3 arrive simultaneously at
the origin. Other vertices refer to simultaneous collision-anticollisions: at the
vertex VAB ©1 & ©2 collide as ©2 and ©3 anticollide. That situation is reversed
at VDE . At VBC ©3 anticollides simultaneously with ©1 and ©2 (the string
S12 is slack), while at VCD ©1 anticollides simultaneously with ©2 and ©3 (the
string S23 is slack).

The construction shown in Figure 44 can be used to develop the trajectory
latent in prescribed initial data, but does not tesselate the plane except in the
two cases shown in Figure 52. And only the first of those cases yields (for reasons
stated in the caption) to analysis by the method of images. That analysis has,
in fact, already been accomplished, in §§7–9. To establish explicit contact with
that earlier work, we introduce new coordinates which (since x1 and x2 were
preempted when we assigned coordinates {x1, x2, x3} to the “atoms”) we call
z1 and z2; working from the preceding figure, we write

r1 = c11z1 + c12z2

r2 = c21z1 + c22z2

r3 = c31z1 + c32z2

and—looking (as a matter of convenience) to the three-body collision points—
require that

− 1
3s = −c11 1

2a+ c12
1
2

√
3a − 2

3s = +c11 1
2a+ c12

1
2

√
3a

− 1
3s = −c21 1

2a+ c22
1
2

√
3a and + 1

3s = +c21 1
2a+ c22

1
2

√
3a

+ 2
3s = −c31 1

2a+ c32
1
2

√
3a + 1

3s = +c31 1
2a+ c32

1
2

√
3a

Working out the implied values of the coefficients cpq (recall in this connection
that s/a = 1

4

√
3) we obtain

r1 = 1
4
√

3
(−z1 −

√
3z2)

r2 = 1
4
√

3
( 2z1)

r3 = 1
4
√

3
(−z1 +

√
3z2)
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A

B

CD

E

Figure 51: Because all masses have been assumed equal, the law
of reflection is automatic.

Figure 52: At left is the case s13 ↓ s ≡ s12 = s23. At right
s13 > 2s, and it has become impossible for ©1 and ©3 to anticollide.
The quadrilateral box (see again Figure 13) does tesselate the plane,
but does not permit unique parity assignments. The equilateral
triangular box—which arises from setting all string-lengths equal—
is therefore unique in the sense that it alone permits application of
the method of images.

with which we are, in fact, already familiar: a notational adjustment

r1 = a
4π

√
3
X2, r2 = a

4π
√

3
X0 and r3 = a

4π
√

3
X1

gives back equations which we encountered already on p. 40.
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z

z

Figure 53: Relationship of the internal molecular coordinates
{r1, r2, r3} to the coordinates {z1, z2} introduced to establish contact
with the “particle in an equilateral box problem” (see Figure 23).
The size of the triangle is set by the string-length s:

height h = 2s

base (or side-length) a = 2√
3
h = 4√

3
s

area = 1
2ah = 4√

3
s2

The special role assigned to r2 reflects the physical fact that ©2 is
atypical in that it is the only “atom” with neighbors both left and
right.

We have now in hand all we need to obtain an exact account of the
internal quantum mechanics of the “one-dimensional string ozone molecule” by
direct reinterpretation of prior results relating to the “equilateral triangular box
problem.” We have reproduced precisely the results to which C. Jung was led by
a group-theoretic mode of argument.54 Jung, however, writes without reference
to the method of images, or to theta functions, and appears not to have noticed
the number-theoretic properties of the spectrum. Concerning the completeness

54 “An exactly soluble three-body problem in one dimension,” Canadian
Journal of Physics 58, 719 (1980). I am indebted to Oz Bonfim for bringing
the existence of this paper to my attention.
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Figure 54: Triatomic string molecule becomes a pinned diatomic
string molecule in the limit m3 → ∞

x

x

s

s

s

Figure 55: Construction of the configuration space accessible to a
pinned diatomic string molecule. It becomes natural to assume as
before that all strings have the same length: s12 = s23 = s13.

of his (non-separable) eigenfunctions (which follows from the fact that they
can be assembled to yield the propagator) he advances only the circumstantial
spectral evidence (see again (69)) that N(E) conforms to the “Morse & Feshbach
principle” mentioned on p. 67.

Jung does remark the existence of two additional cases that yield also to his
group-theoretic mode of analysis. Both of those involve setting m3 → ∞; the
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resulting systems can be thought of as “diatomic molecules bound to points”
(“one-dimensional surface chemistry!”), as illustrated in Figure 54. Passage to
the limit (equivalently: the presence of the pin or “barrier”) serves to break
the translational symmetry of the system, and to reduce by one the number of
degrees of freedom. Assigning coordinates x1 ≤ x2 ≤ 0 to m1 and m2, the
accessible configuration space is constructed by a variant of Figure 50: see
Figure 55 below. Clearly, a two-particle system which is confined to an interval
by action of a pin and a string is physically and formally equivalent to a two-
particle system confined by the action of two pins. We are brought thus back
to precisely the systems studied already in §12. Those are systems—formally
equivalent to the 45-45-90 and 30-60-90 box systems studied earlier—which
we found yield to the method of images, and which Jung finds yield to the
methods of group theory. Notably, Jung appeals not to a group theory but to
a result obtained analytically by F. Oberhettinger55 to identify his tractable
cases; Oberhettinger found that “diffraction in a corner of a polygon does not
occur whenever the angle of this corner is π divided by an integer.” For triangles
on has, by this principle, three possibilities and three only:

π
4 + π

4 + π
2 = π : the 45-45-90 triangle

π
3 + π

3 + π
3 = π : the 60-60-60 triangle

π
6 + π

2 + π
2 = π : the 30-60-90 triangle

One can, by the way, on these grounds understand the “intractability” of
the case—otherwise the physically most attractive case—that gives rise to the
quadrilateral in Figure 52, wherein two of the angles are 2

3π. It is interesting
to notice also that “diffraction physics” and the geometrical “reflective tesse-
lation problem”56 lead one via identical conditions to identical populations of
cases. And that the relevant “angles” are in the molecular context set not by
the geometry of a literal “box” but (by the mechanism illustrated in Figure 43)
by mass ratios.

When I remarked that the molecular interpretation of the particle-in-a-box
problem “leads naturally to a modest loosening of the constraints that at present
so tightly bind us” I had in mind is illustrated in my final figure, and has to
do with the imposition of periodic boundary conditions which—though they do
arise in connection with the thermal interpretation of our physics (see again
the Sommerfeld material mentioned on p. 11)—are not natural to the quantum
mechanics of a single particle in a polygonal box. Related topics will be treated
in a separate essay, so I will not on this occasion spell out the details, some of
which can be found (beginning at p. 238) in feynman formalism (–).

Jung himself—proceeding in reverse along the path we have traveled—did
not fail to notice that his molecular systems admit of particle-in-a-box

55 J. Res. Natl. Bur. Stand. 61, 343 (1958).
56 See again the reference (near the beginning of §6) to work by Wieting.
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Figure 56: From molecule-in-a-box to molecule-on-a-ring; a
reflective phase factor disappears from the analysis, but the method
of images survives otherwise intact.

interpretation, and that they pertain also to the vibration of membranes. It
is, I suppose, only “amusing” that our original particle-in-a-box results admit
of several alternative lines of physical reinterpretation. More interesting—
because more deeply consequential—is the fact which has just emerged: group
representation theory and the method of images (at least as they relate to the
class of problems which have concerned us) appear to have identical domains
of applicability. This, on second thought, is hardly grounds for surprise; the
theory of theta functions, particularly in its multivariate formulation, is central
to an intensely group-theoretic branch of higher analysis. But it is disquieting
news; what I likened at the beginning of §12 to a Mozartian trio has become
a quartet. The “rigidity” of group theory would appear (if group theory is
an essential member of the ensemble) to diminish the likelihood that I will be
successful in my motivating ambition, which is to develop such an enlargement
of the theory of theta functions (and, more particularly, of Jacobi’s identity) as
would permit me to say useful things about (to pick a silly example which lies,
however, far beyond my present reach) the 29-62-89 triangle. It remains my
hunch—but only a hunch—that Jacobi’s beautiful identity is only a symptom
of a much deeper mathematics to which the Feynman formalism alludes. In
companion essays I will explore details of topics suggested by the preceding
(long!) discussion; whatever intrinsic interest may attach to those details, my
unspoken objective as I go about the business of patiently “turning over the
rocks” will be to find a soft spot in the rigid ediface that stands now before us.
My objective will be to lend substance to my hunch—else to expose clearly why
it is misguided.


